
1

www.martinwerner.de
Martin Werner

www.martinwerner.de

Deep Learning

with applications to point clouds

2

www.martinwerner.de

Outline

 A Short History of Deep Learning

 Deep Learning Elements

 Neurons

 Neural Networks

 Back Propagation and Gradient Descent

 Some Basic Deep Learning Architectures

 Dealing with Point Clouds

 And now? How would I?

3

www.martinwerner.de
Martin Werner

www.martinwerner.de

A Short History of Deep Learning

4

www.martinwerner.de

History of Deep Learning

https://pbs.twimg.com/media/DuE4LnRWs
AEpHjQ.jpg:large

5

www.martinwerner.de

History of Deep Learning

 Nothing of this is really new. It is an old and established discipline.

 The current hype comes from several factors

 Advances in computational performances (GPUs, TPUs)

 Creation of Huge Datasets

 (Smaller) Advances in Stochastic Gradient Decent

 Novel Ideas about Regularization

 Novel Ideas for Capacity (Weight) Reduction

 Convolutional Neural Networks

 But, Deep Learning is not very powerful per se:

 Energy Consumption

 Dataset Creation Cost

 Performance of the Deployed System

 Understandability and Certification of Systems

6

www.martinwerner.de
Martin Werner

www.martinwerner.de

Deep Learning Elements

7

www.martinwerner.de
Martin Werner

www.martinwerner.de

Neurons and Neural Networks

8

www.martinwerner.de

Biology-Inspired but simplified

S

Input 1 Input N

w1 wN

Activation

CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.p
hp?curid=1474927

9

www.martinwerner.de

Linear Neuron

The simplest Neuron is a linear one.

This means

 Activation Function is linear

 A bias term is added

 Then, we can write the output as

𝑖=1..𝑁

𝜔𝑖𝑥𝑖 + 𝑏

 For simplicity, the bias is often made
an artifical input to the system such
that it reads even simpler (w_0 = 1,
x_0 = b)

𝑖=0..𝑁

𝜔𝑖𝑥𝑖

S

Input 1 Input N

w1 wN

Activation

10

www.martinwerner.de

Let us learn something

 Lets assume two inputs to the neuron and f(x)=y the activation
function.

 Question: What can we represent in this way:

 Answer: Lets calculate a bit (with explicit bias)

𝑖

𝜔𝑖 + 𝑏 = 𝜔1𝑥1 + 𝜔2𝑥2 + 𝑏

 Now, for binary classification, we need a simple decision rule. What
about (output > 0)

 Then, we can learn sets that have the structure

𝑖

𝜔𝑖 + 𝑏 = 𝜔1𝑥1 + 𝜔2𝑥2 + 𝑏 ≥ 0

 This is easily seen to be a split along a line in space. Lets do this

11

www.martinwerner.de

This is a typical linear neuron decision

12

www.martinwerner.de

However, XOR is impossible to represent with a single
neuron

0

1

0 1

There is no line that separates
the two colors!

13

www.martinwerner.de

Solution: Add multiple layers (MLP)

x

y

a

b

o

This architecture has an
bias term for all hidden
nodes (a) and the output
node which is hidden.

That is, there are nine
weights!

Each of the early neurons
decides
a) Above the line
b) Below the line

The last neuron calculates A
AND B, which is easily
possible !

0

1

0 1

a

B

Assignment: Find a set of weights for the network to model XOR

14

www.martinwerner.de

The first scientific! AI winter
(the term AI winter is used for periods of cut funding as well)

Now, for a long time, no real progress was made. People got frustrated,
left the field. The frustration points were:

 Finding optimal weights is NP-complete – exponential runtime

 While solving XOR is possible with a MLP, it is impossible to train,
because the expected output of the inner connections is unknown.

 Many people turned away from this part of machine learning

 Dates are difficult to assign as related machine learning techinques
are still evolving:

 Starts about the time that the implications of the unsolvability of
XOR for general intelligence become clear

 Challenge Problem has been identified: train MLP

 Ends about the time where multilayer perceptrons are
successfully trained

 Challenge Problem has been fully solved without
avoiding it.

15

www.martinwerner.de

The solution to the MLP problem

16

www.martinwerner.de

Back Propagation

 Where do the weights come from?

 Finding the optimal weights is NP-complete (that is, as hard as
the TSP; Blum and Rivest, 1992)

 Fortunately, we can find a sufficient set of weights through back
propagation (e.g., Rumelhart et al. (1985))

 First, we compare the output of a forward pass with the expected
value.

 Then, we slightly adjust each of the weights backwards in the network
by a very small amount.

 We do this over and over again (training)

 We do so, because the error function we chose is differentiable and
sufficiently smooth such that the local direction of error reduction is
sensible globally (which need not be the case)

17

www.martinwerner.de

Backpropagation Details

 Forward Pass

 All units within a layer have their values set in parallel

 Next layer only after first layer has completely been computed

 Layer Function needs to

 Have bounded derivative only

 However, linear aggregation of the input before applying one non-
linear function simplifies learning procedure

 Total Error Function

 𝐸 =
1

2
σ𝑐σ𝑗 𝑦𝑗,𝑐 − 𝑑𝑗,𝑐

2

 Idea: Use Gradient Decent of this with partial derivatives with
respect to each and every weight.

18

www.martinwerner.de

Gradient Decent

Let us fix a single case c. Then

𝜕𝐸

𝜕𝑦𝑗
= 𝑦𝑗 − 𝑑𝑗

Now, let 𝑥𝑗 denote the activity of a unit in the forward pass. Then use the

chain rule

𝜕𝐸

𝜕𝑥𝑗
=

𝜕𝐸

𝜕𝑦𝑗
⋅
𝜕𝑦𝑗

𝜕𝑥𝑗

Now, with an activity function of 𝑦𝑗 =
1

1+𝑒
−𝑥𝑗

we can calculate and

substitude the second factor:

𝜕𝐸

𝜕𝑥𝑗
==

𝜕𝐸

𝜕𝑦𝑗
⋅ 𝑦𝑗 1 − 𝑦𝑗

 This means, we know how the total input of node 𝑥𝑗 changes the total

error for this case. But as the total input is a linear sum of the inputs,
we can compute

19

www.martinwerner.de

𝜕𝐸

𝜕𝑤𝑖𝑗
=

𝜕𝐸

𝜕𝑥𝑗
⋅
𝜕𝑥𝑗

𝜕𝑤𝑖𝑗
=

𝜕𝐸

𝜕𝑥𝑗
⋅ 𝑦𝑖

 Und analog dazu können wir auch diese Ableitung für y ausrechnen:

𝜕𝐸

𝜕𝑦𝑖
=

𝜕𝐸

𝜕𝑥𝑗
⋅
𝜕𝑥𝑗

𝜕𝑦𝑖
=

𝜕𝐸

𝜕𝑥𝑗
⋅ wji

 Now, we have seen how to calculate
𝜕𝐸

𝜕𝑦
for any unit in the penultimate

layer when given information
𝜕𝐸

𝜕𝑦
from the last layer

 This can be iterated backwards such that the derivatives
𝜕𝐸

𝜕𝑤𝑗𝑖
become

known along the way.

 These are used for (stochastic) gradient descent!

20

www.martinwerner.de

Fully Explained

 It is a very good idea to spell out this for the XOR problem. You can
follow the following article (using different names than here)

 https://medium.com/@14prakash/back-propagation-is-very-
simple-who-made-it-complicated-97b794c97e5c

 One way of thinking about back-propagation is that it is a major
factorization of the derivative into things that we can calculate as
numbers!

𝑑𝐸

𝑑𝑤
=

𝑑𝐸

𝑑𝑦
⋅
𝑑𝑦

𝑑𝑥
⋅
𝑑𝑥

𝑑𝑤

https://medium.com/@14prakash/back-propagation-is-very-simple-who-made-it-complicated-97b794c97e5c

21

www.martinwerner.de

Now allows many architectures

 Classical Networks

 Input, a few hidden layers, an output

 Difficulty: expressivity (number of layers) vs. trainability (number
of parameters)

 Convolutional Neural Networks and Pooling

 Input an image, Layers are now calculating some local
convolution of the image and dimensionality is reduced by
pooling, that is taking only a subset of the data points.

 Less Weights (only once for the convolution kernel which is
swiped over the image, not for every pixel)

 Recurrent Networks

 They can have loops. That is the output of a layer serves as the
input of a previous layer. Sequences are typical examples, the
network can remember (learn to remember)

22

www.martinwerner.de

Second (scientific) AI Winter

 Now, Backpropagation can train deep networks and, therefore,
XOR,but

 Not enough processing power (no GPUs, for example)

 Lack of Datasets (big and annotated datasets, because in real-
world scenarios you would need those)

 Overfitting (mainly, because you need to choose a sufficiently
expressive architecture but don‘t have enough data to train)

 Vanishing Gradient Problem

 During learning, you multiply a lot of very small numbers
which eventually get too small for sensible learning on finite
accuracy machines

 People turned away, because practical examples of deep networks
were not brought to significant success, especially as other
techniques became very powerful including support vector machines

23

www.martinwerner.de

Breakthroughs

 Training tricks

 ImageNet Dataset (2009, 16 million annotated images)

 Visibility through ILSVRC (1 million images, 1,000 classes)

2013: AlexNet trained on ImageNet using two GPUs

 Dropout

 Rectified Linear Units (ReLU) instead of sigmoid or tanh activations

 Data Augmentation

24

www.martinwerner.de

In computer vision

 Errors drop significantly year by year

 Architectures get deeper and deeper

 Trainable with tricks

 Some results from the golden years of CNNs follow

25

www.martinwerner.de

ILSVC over the early years

26

www.martinwerner.de

2015

 In 2015, Microsoft Research Asia won with a 150 layer network

 Almost superhuman performance (3.5 % error, later even
improved)

 GoogLeNet 2014 had 22 layers

 Is the next AI winter just around the corner?

 We have been successful in image regognition, speech, and
translation.

 But we rely on excessive datasets that we cannot generate

 By abuse of language (AI vs. ML) also termed „narrow AI“

27

www.martinwerner.de
Martin Werner

www.martinwerner.de

Some Basic Deep Learning Architectures

28

www.martinwerner.de

Architectures

Perceptron (P)

29

www.martinwerner.de

Architectures

Feed Forward (FF)

30

www.martinwerner.de

Architectures

Deep Feed Forward (DFF)

31

www.martinwerner.de

Architectures

Recurrent Neural Network
(RNN)

Long / Short Term Memory
(LSTM)

Gated Recurrent Unit
(GRU)

32

www.martinwerner.de

Architectures

Auto Encoder (AE)

33

www.martinwerner.de

Architectures

Deep Convolutional Network (CNN)

34

www.martinwerner.de

Architectures

Deconvolutional Network (DN)

35

www.martinwerner.de

Architectures

Deep Residual Network (DRN)

36

www.martinwerner.de
Martin Werner

www.martinwerner.de

Dealing with Point Clouds

37

www.martinwerner.de

A first Success Story: PointNet

38

www.martinwerner.de

Why?

39

www.martinwerner.de

Classical Point Cloud Treatment

 Extract hand-crafted features (e.g., structure tensor + friends)

 Should be invariant for certain transformations

 Can be global or local

 Usually need a context definition (for pure 3D points)

 Including Deep Feed-Forward Architectures!

 Volumetric CNNs

 Step towards a voxelgrid and use (learned) 3D convolutions

 Multiview CNNs

 Render several perspective views of the point clouds and feed
them to a CNN

 Limited to aspects represented by 2D aspects (e.g., classification,
but not completion)

40

www.martinwerner.de

Central challenge

 Point Clouds are Unordered Collections of Points

 and there is no sensible ordering function

Model Functionalities Needed

 Classification outputs a score for each candidate class

 For Scene Understanding / Segmentation, the model outputs scores
for each point and each candidate class

41

www.martinwerner.de

A first glance at the architecture

42

www.martinwerner.de

PointNet Architecture

 Based on three main properties, assertions and their consequences

 The order of the points shall not matter

 Nearby things shall be able to interact with each other

 The system should become invariant under rigid
transformation including rotation, translation, and flip

43

www.martinwerner.de

Treating the Order of Points

 To make a model invariant under the order of input points can be
done basically in three ways:

 Sort input into a canonical order,

 However, no order exists that preserves data locality
completely

 Treat the input as a sequence and train with all permutations of
the input

 However, it has been shown that order matters still.

 Excessive training times (There are n! permutations)

 Use a simple, symmetric function to aggregate information from
each point

 Okay, lets go for it…

44

www.martinwerner.de

The symmetric function

 It would be easy to use addition or multiplication as they are perfectly
commutative. But more flexibility is needed and a trainable
(learnable) function is preferred.

 Therefore, f is a function mapping the point cloud to a single real
number (e.g., a point feature)

 But it is being factorized into a function g representing max-pooling
and h representing multilayer perceptron networks.

 Several functions h lead to several features now independent
from the point set ordering

45

www.martinwerner.de

Local and Global Information Treatment

 For now, we just transformed the whole point cloud into a single
feature vector 𝑓1…𝑓𝑘

 We can now just train any machine learning system like a SVM or
a MLP on this very result

 However, this can only rely on global information

 But, we will need a combination of local and global information

 This is done in the Segmentation Network

46

www.martinwerner.de

The Segmentation Network

 It concatenates 64 per point features with 1024 global features for a
matrix of nx1088 of features

 Thus, it can use local and global informamtion

 Experimentally shown that, for example, normals can be predicted
from this stage

47

www.martinwerner.de

Invariance w.r.t. rigid transformations

 The remaining piece is how to achieve invariance under rotation,
translation etc.

 Idea: Predict an affine transformation matrix (T-Net) and apply this
transformation to the input points

 These mini-networks have the same structure as the global
network: point independent feature extraction, max pooling, and
fully connected layers

 This can as well be applied again to the feature space.

 But beware, it is a large matrix and difficult to optimize

 Therefore, a constraint makes it almost orthogonal by adding to
the loss

48

www.martinwerner.de

Why PointNet? Because it looks nice and works in
practice

49

www.martinwerner.de

Yes, it works…

50

www.martinwerner.de

… but it is also theoretically sound!

Funktionen h und g existieren also tatsächlich für jede Fehlerschranke.
Allerdings ist das kein Ergebnis zur Trainierbarkeit. Nur die Existenz…

51

www.martinwerner.de
Martin Werner

www.martinwerner.de

PointNet++

52

www.martinwerner.de

Extension towards real-world problems

 PointNet uses a single Max-Pooling layer, which means that all
features are single-scale

 Point Clouds have varying sampling density, especially with fixed
sensors

 PointNet++ is based on a hierarchical grouping analyzing larger
and larger extracts of the point cloud

 Implemented as Compression: At each and every step, a point set
is abstracted to a point set with fewer points

 Three „layers“:

 Sampling, selects a set of points as centroids

 Grouping, assigns points to centroids

 PointNet++ uses a „mini“-PointNet to extract features

53

www.martinwerner.de

Only the ideas

 Sampling Layer

 Iterative Farthest Point Sampling (FPS)
Iteratively add the farthest point from the input to the current set

 Grouping Layer

 Assign some neighboring points using a

 ball query

 Pro: same scale, Con: different number of elements

 kNN

 Pro: same number of elements, Con: different scale

 Ball query preferred as PointNet can deal with varying inputs

 Many additional tricks

 See https://arxiv.org/pdf/1706.02413.pdf

https://arxiv.org/pdf/1706.02413.pdf

54

www.martinwerner.de
Martin Werner

www.martinwerner.de

And now? How would I?

55

www.martinwerner.de

Lets go for it

 Run a computer / container with tensorflow

 I am runnning NVIDIA‘s optimized tensorflow container (need an
account at NVIDIA container registry)

 Optimized by NVIDIA for DGX-1 Familiy

 On 8 interconnected V100 GPUs (256 GB total memory)

 Trains about 2 hours to 88.8 % accuracy on point cloud
classification for ModelNet 40 dataset

 Inside the container (or in the Dockerfile)

 apt-get install libhdf5-dev (for HDF5 file support)

 pip install h5py

 git clone https://github.com/charlesq34/pointnet

 python train.py

 Automatically downloads dataset

 Runs a few epoochs and outputs results

56

www.martinwerner.de

Hands-On

root@ede2a32eccac:/workspace/pointnet# python train.py

--2019-01-17 06:41:18--

https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_

2048.zip

Resolving shapenet.cs.stanford.edu

(shapenet.cs.stanford.edu)...

171.67.77.19

Connecting to shapenet.cs.stanford.edu

(shapenet.cs.stanford.edu)|171.67.77.19|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 435212151 (415M) [application/zip] Saving to:

‘modelnet40_ply_hdf5_2048.zip’

modelnet40_ply_hdf5 100%[===================>] 415.05M

310KB/s in 22m 30s

https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip

57

www.martinwerner.de

Results look like

[…]

eval mean loss: 0.549058

eval accuracy: 0.886769

eval avg class acc: 0.860618

**** EPOCH 249 ****

[…]

----1-----

eval mean loss: 0.546670

eval accuracy: 0.888393

eval avg class acc: 0.858817

(after 2 hours including data download on a single DGX-1)

58

www.martinwerner.de

Per-class performance and visualization of errors

$> pip install scipy

$> pip install image # for PIL

$> pip install matplotlib # for visualizations

$> python evaluate.py –visu

This now creates output of erroneous classifications in the

dump folder and gives per class performance results. Looks

like

airplane: 1.000

bathtub: 0.860

bed: 0.980

bench: 0.700

bookshelf: 0.900

bottle: 0.940

bowl: 0.950

car: 0.990

chair: 0.980

cone: 0.950

cup: 0.550

59

www.martinwerner.de

Thanks

