Support Vector Machines

Nonprobabilistic Discriminative Classifiers

Contents

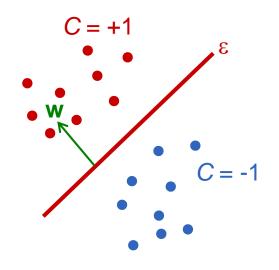
- Support Vector Machines
- SVM with errors in the training data
- Expansion to more than two classes
- Probabilities
- Examples
- Discussion

- Binary classification : $C \in \{-1, +1\}$
- Search for hyperplane ε in feature space that seperates the classes in the training data:
 ε: w^T x + b = 0

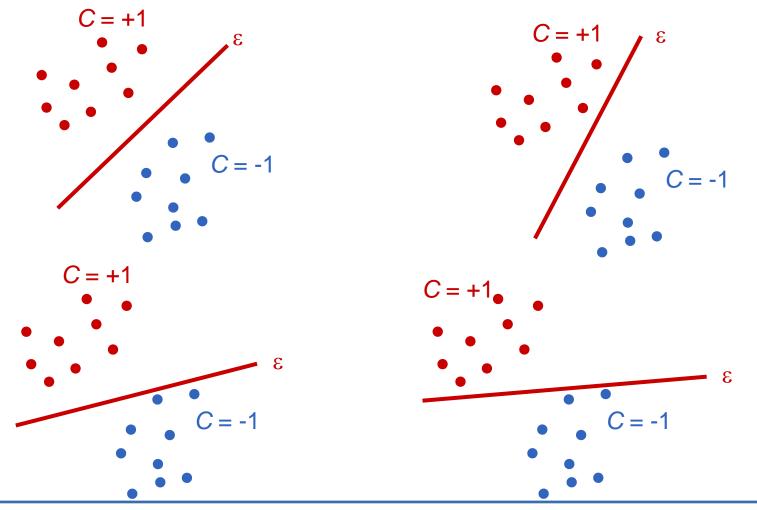
w: normal vector

b: constant term

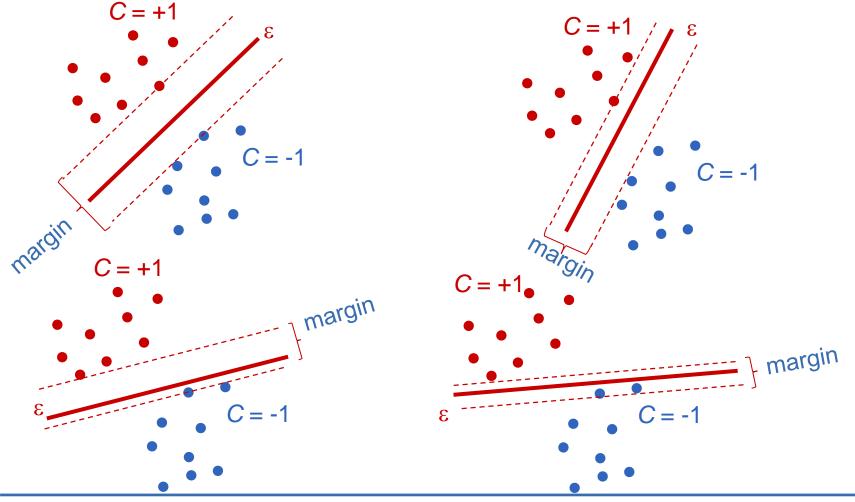
- Training: find w, b
- **Classification:** $C = sign(\mathbf{w}^{T} \cdot \mathbf{x} + b)$
- But: Which is the best hyper level for given training data?



There are many possible hyperplanes...



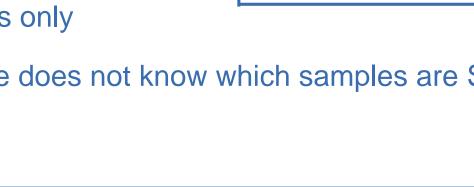
• Margin: Region near the hyperplane without training data

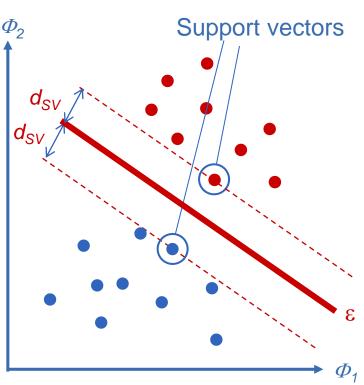


 Maximum margin principle: Determine ε so that the distance d_{SV} of ε to the nearest training sample is maximized [Vapnik, 1998]

answer the question: Which is the best hyper level

- The points with distance d_{SV} of ε are called Support Vectors (SV)
- Result depends on SVs only
- But: before training one does not know which samples are SVs





Support Vector Machines: Hyperplane

 Φ_2

 d_{SV}

 d_{SV}

||w

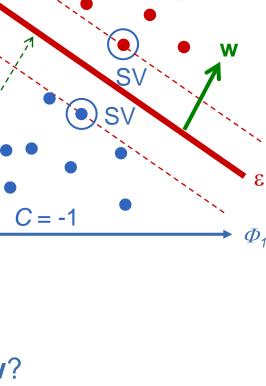
- Feature Space Mapping $\Phi(\mathbf{x})$ if the classes are not linearly separable
- Binary classification: class $C \in \{-1, +1\}$
- Hyperplane in the transformed feature space:

 $\varepsilon: \mathbf{w}^{\mathsf{T}} \cdot \boldsymbol{\Phi}(\mathbf{x}) + b = 0$

• Distance d_n of a point $\Phi(\mathbf{x}_n)$ from ϵ :

 $d_n = || 1/||\mathbf{w}|| \cdot [\mathbf{w}^{\mathsf{T}} \cdot \Phi(\mathbf{x}_n) + b] ||$

- Distance of the plane from the origin: b / ||w||
- The length of **w** is undefined \rightarrow How to scale **w**?



C = +1

7

Support Vector Machines: Margin

• Scaling of w so that

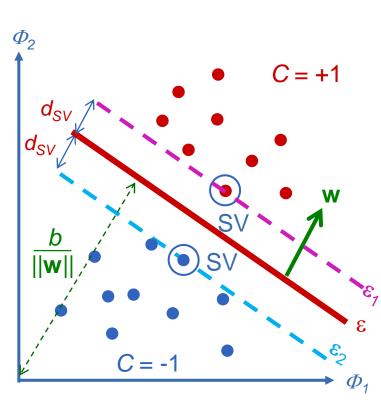
 $\mathbf{w}^{\mathsf{T}} \cdot \mathbf{\Phi}(\mathbf{x}_{\mathsf{n}}) + b = \pm 1$ for SVs

Margin is limited by two planes ε₁, ε₂
 which are parallel to ε (same normal w)

$$\varepsilon_{1} : \mathbf{w}^{\mathsf{T}} \cdot \mathbf{\Phi}(\mathbf{x}_{\mathsf{n}}) + b = +1$$

$$\varepsilon_{2} : \mathbf{w}^{\mathsf{T}} \cdot \mathbf{\Phi}(\mathbf{x}_{\mathsf{n}}) + b = -1$$
or
$$\varepsilon_{1} : \mathbf{w}^{\mathsf{T}} \cdot \mathbf{\Phi}(\mathbf{x}_{\mathsf{n}}) + b - 1 = 0$$

$$\varepsilon_{2} : \mathbf{w}^{\mathsf{T}} \cdot \mathbf{\Phi}(\mathbf{x}_{\mathsf{n}}) + b + 1 = 0$$

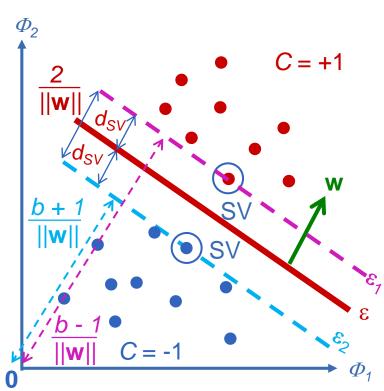


Support Vector Machines: Margin Width

 Distances of the planes ε₁, ε₂ from the origin **0**:

$$- \varepsilon_{1} : \mathbf{w}^{\mathsf{T}} \cdot \mathbf{\Phi}(\mathbf{x}_{\mathsf{n}}) + b - 1 = 0$$
$$d(\varepsilon_{1}, \mathbf{0}) = \frac{b - 1}{\|\mathbf{w}\|}$$

$$- \varepsilon_2 : \mathbf{w}^{\mathsf{T}} \cdot \mathbf{\Phi}(\mathbf{x}_{\mathsf{n}}) + b + 1 = 0$$
$$d(\varepsilon_2, \mathbf{0}) = \frac{b+1}{\|\mathbf{w}\|}$$

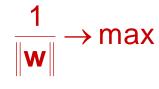


• Distance between the two planes: width of the margin $2 \cdot d_{SV}$

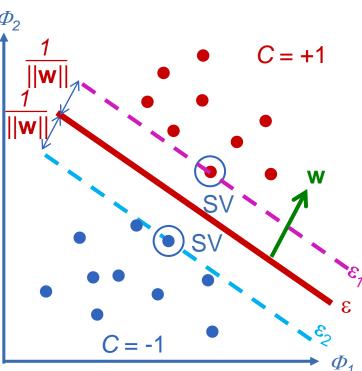
$$2 \cdot d_{SV} = d(\varepsilon_2, \mathbf{0}) - d(\varepsilon_1, \mathbf{0}) = \frac{b+1}{\|\mathbf{w}\|} - \frac{b-1}{\|\mathbf{w}\|} = \frac{2}{\|\mathbf{w}\|}$$

Support Vector Machines: Maximum Margin Criterion

 Result: If we scale w as defined on the previous slides, maximising the margin is equivalent to



- Without considering the training data, this would result in w = 0
- To obtain a meaningful solution, we have to introduce constraints for the training data!



Support Vector Machines: Constraints

- Constraints for feature vectors \mathbf{x}_n with class $C_n = +1$:
 - SVs are on plane ϵ_1

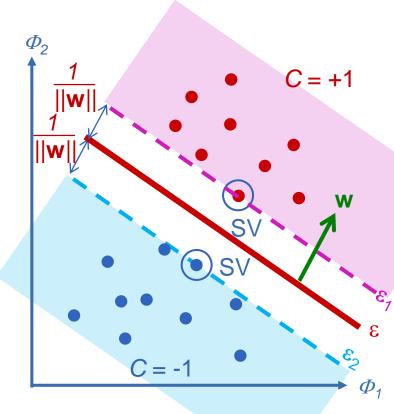
 $\rightarrow \mathbf{w}^{\mathsf{T}} \cdot \Phi(\mathbf{x}_{\mathsf{n}}) + b = +1$

- All other points have to be on the side of ε_1 indicated by the direction of w (because they have to be classified correctly!)

$$\rightarrow \mathbf{w}^{\mathsf{T}} \cdot \Phi(\mathbf{x}_{\mathsf{n}}) + b > +1$$

- Consequently: $\mathbf{w}^{\mathsf{T}} \cdot \Phi(\mathbf{x}_n) + b \ge +1$ for $C_n = +1$
 - $\mathbf{w}^{\mathsf{T}} \cdot \Phi(\mathbf{x}_{\mathsf{n}}) + b \leq -1 \text{ for } C_{\mathsf{n}} = -1$

Similarly:



Support Vector Machines: Constraints

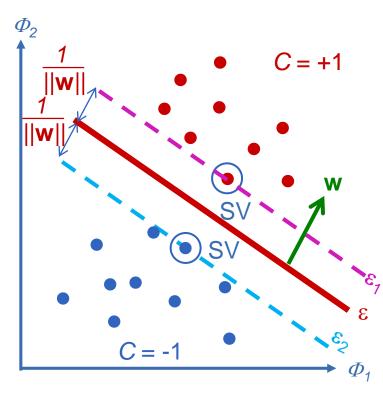
• Constraints:

 $\mathbf{w}^{\mathsf{T}} \cdot \Phi(\mathbf{x}_{\mathsf{n}}) + b \geq +1 \text{ for } C_{\mathsf{n}} = +1$

 $\mathbf{w}^{\mathsf{T}} \cdot \Phi(\mathbf{x}_n) + b \leq -1 \text{ for } C_n = -1$

Multiplication of these inequalities by C_n yields a uniform representation for the constraints:

$$C_n \cdot [\mathbf{w}^{\mathsf{T}} \cdot \Phi(\mathbf{x}_n) + b] \geq 1 \quad \forall \mathbf{x}_n$$



• The identity applies to the support vectors

Support Vector Machines: Training

• We want to maximize the margin separating the training data given the constraints introduced by the training samples, thus

$$\frac{1}{\|\mathbf{w}\|} \rightarrow \max$$

subject to $C_n \cdot [\mathbf{w}^T \cdot \Phi(\mathbf{x}_n) + b] \ge 1 \quad \forall \mathbf{x}_n$

- This is mathematically difficult
- We solve the equivalent problem: ½ ||w||² = ½ w^T w → min subject to the same constraints
- Optimization with inequalities as constraints
 → Lagrange multipliers α_n ≥ 0 (one for each training sample),
 training data comes to play in the process of searching for best hyperplane via Lagrange multipliers

Support Vector Machines: Training

• New objective function to be minimized subject to $\alpha_n \ge 0 \forall \mathbf{x}_n$:

 $L(\mathbf{w}, b, \alpha) = \frac{1}{2} \cdot \mathbf{w}^{\mathsf{T}} \cdot \mathbf{w} - \sum \alpha_n \cdot \{C_n \cdot [\mathbf{w}^{\mathsf{T}} \cdot \Phi(\mathbf{x}_n) + b] - 1\}$

• Derivatives: $dL / d\mathbf{w} = \mathbf{w} - \Sigma \alpha_n \cdot C_n \cdot \Phi(\mathbf{x}_n)$ $dL / db = -\Sigma \alpha_n \cdot C_n$

$$dL / d\mathbf{w} = 0 \qquad \rightarrow \mathbf{w} = \Sigma \ \alpha_n \cdot \mathbf{C}_n \cdot \mathbf{\Phi}(\mathbf{x}_n)$$

 $dL / db = 0 \qquad \rightarrow \Sigma \alpha_n \cdot C_n = 0$

• Substituting this result in *L* leads to a new objective function :

 $Z(\alpha) = \sum \alpha_n - \frac{1}{2} \cdot \sum \alpha_n \cdot \alpha_m \cdot C_n \cdot C_m \cdot \Phi(\mathbf{x}_n)^{\mathsf{T}} \cdot \Phi(\mathbf{x}_m) \rightarrow \min$

with additional constraints : $\alpha_n \ge 0$ and $\Sigma \alpha_n \cdot C_n = 0$

Support Vector Machines: Kernel Trick

• Kernel trick: Substitution of $\Phi(\mathbf{x}_n)^T \cdot \Phi(\mathbf{x}_m)$ by Kernel function

 $K(\mathbf{x}_{n}, \mathbf{x}_{m}) = \mathbf{\Phi}(\mathbf{x}_{n})^{\mathsf{T}} \cdot \mathbf{\Phi}(\mathbf{x}_{m})$

- Examples:
 - Gaussian Kernel (also called "Radial Basis Function", RBF): $K_{RBF}(\mathbf{x}_{n}, \mathbf{x}_{m}) = e^{-\frac{(\mathbf{x}_{n} - \mathbf{x}_{m})^{2}}{2 \cdot \sigma^{2}}}$
 - Polynomial Kernel:

$$K_{poly}\left(\mathbf{x}_{n},\mathbf{x}_{m}\right) = \left(\mathbf{s}\cdot\mathbf{x}_{n}^{T}\cdot\mathbf{x}_{m}+r\right)^{d}$$

Support Vector Machines: Kernel Trick

- Advantages of applying the Kernel trick:
 - No need to define a Feature Space Mapping $\Phi(\mathbf{x})$
 - No need to explicitly calculate $\Phi(\mathbf{x})$ or $\Phi(\mathbf{x}_n)^{\mathsf{T}} \cdot \Phi(\mathbf{x}_m)$
 - The feature space mapping is carried out implicitly by applying the kernel function to substitute for the inner product
 - Implicitly, one can work in very high-dimensional feature spaces without the additional computational burden
 - → SVM can (in principle) deal with an arbitrary number of clusters per class in feature space!

Support Vector Machines: Training

• Substituting the kernel function for the inner product we get:

 $Z(\alpha) = \Sigma \ \alpha_n - \frac{1}{2} \cdot \Sigma \Sigma \ \alpha_n \cdot \alpha_m \cdot C_n \cdot C_m \cdot K(\mathbf{x}_n, \mathbf{x}_m) \rightarrow \min$

with the constraints: $\alpha_n \ge 0$ and $\Sigma \alpha_n \cdot C_n = 0$

- Minimizing of $Z(\alpha)$ with consideration of constraints leads to a quadratic optimization problem [Vapnik, 1998]
- The parameters to be determined are the Lagrange factors α_n
- Support Vectors: training samples \mathbf{x}_n with $\alpha_n > 0 !!$
- The result of training is the Lagrange factors and the parameter *b*!

Support Vector Machines: Training

- Determination of *b* from Support Vectors and α_n :
 - Constraints for SV: $C_{SV} \cdot [\mathbf{w}^T \cdot \Phi(\mathbf{x}_{SV}) + b] = 1$
 - Using $\mathbf{w} = \Sigma \alpha_n \cdot C_n \cdot \Phi(\mathbf{x}_n)$

 $\rightarrow C_{SV} \cdot [\Sigma \ \alpha_n \cdot \ C_n \cdot \ \Phi(\mathbf{x}_n)^{\mathsf{T}} \cdot \ \Phi(\mathbf{x}_{SV}) + b] = 1$

- Again: apply the Kernel function $K(\mathbf{x}_n, \mathbf{x}_m)$

 $\rightarrow C_{SV} \cdot [\Sigma \ \alpha_n \cdot C_n \cdot K(\mathbf{x}_n, \mathbf{x}_{SV}) + b] = 1$

- There is one such equation for *b* per support vector

 \rightarrow *b* is calculated from each support vector once

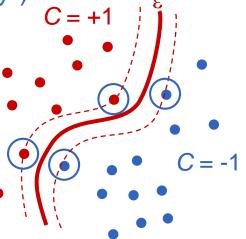
 \rightarrow Final value for *b* by averaging

Support Vector Machines: Classification

Classification: The class C for a feature vector x results from the sign of w^T • Φ(x) + b:

 $C = \operatorname{sign}[\mathbf{w}^{\mathsf{T}} \cdot \mathbf{\Phi}(\mathbf{x}) + b] = \operatorname{sign}[\Sigma \ \alpha_n \cdot C_n \cdot \mathbf{\Phi}(\mathbf{x}_n)^{\mathsf{T}} \cdot \mathbf{\Phi}(\mathbf{x}) + b]$

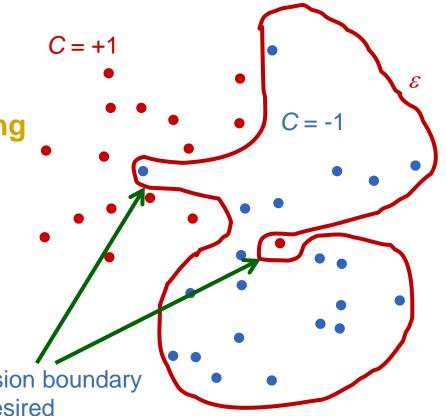
- Again, the Kernel trick works: $C = \text{sign}[\Sigma \alpha_n \cdot C_n \cdot K(\mathbf{x}_n, \mathbf{x}) + b]$
- The sum only needs to be taken over SVs (because for all other training data α_n is 0, can be used inversely!)
- Transition to high dimensional feature space
 - → Can deliver non-linear boundaries in the original feature space



19

Support Vector Machines: Overfitting

- SVM can potentially separate all possible configurations of points
- Danger:
 - Overfitting
 - Complex models requiring too many parameters
 (→ many SVs)
- → Expansion of the model!



Very unlikely shape of the decision boundary
→ Stronger generalisation is desired

- Introduction of a slack variable $\xi_n \ge 0$ for every training sample with:
 - $\succ \xi_n = 0$: Samples at the edge of the margin or in the region assigned to C_n
 - $\succ \xi_n = 1$: Samples on ε



- $\succ \xi_n < 1$: Sample in the margin but on the correct side of ε
- > ξ_n > 1: Samples on the wrong side of ε , i.e. training samples having a wrong class label
- For points inside the margin or on the wrong side of ε , this definition implies $\xi_n = |C_n (\mathbf{w}^T \cdot \Phi(\mathbf{x}_n) + b)|$

• Using these slack variables, the constraints become

 $C_n \cdot [\mathbf{w}^{\mathsf{T}} \cdot \Phi(\mathbf{x}_n) + b] \geq 1 - \xi_n$

- Cost P > 0 for samples with $\xi_n > 0 \rightarrow$ penalise occurrence of too many outliers
- New objective function: $P \cdot \sum \xi_n + \frac{1}{2} \cdot ||\mathbf{w}||^2 \rightarrow \min$

with constraints $\xi_n \ge 0$ $C_n \cdot [\mathbf{w}^T \cdot \Phi(\mathbf{x}_n) + b] \ge 1 - \xi_n$

- Lagrange multipliers $\alpha_n \ge 0$ and $\mu_n \ge 0$
- Objective function to be minimized: $L(\mathbf{w}, b, \alpha, \mu) = \frac{1}{2} \cdot \mathbf{w}^{\mathsf{T}} \cdot \mathbf{w} + P \cdot \Sigma \xi_{n}$ $-\Sigma \alpha_{n} \cdot \{C_{n} \cdot [\mathbf{w}^{\mathsf{T}} \cdot \Phi(\mathbf{x}_{n}) + b] - 1 + \xi_{n}\} - \Sigma \mu_{n} \cdot \xi_{n}$

Again, we determine the first derivatives of the objective function by
 w, b and ξ_n and set them to zero, which leads to:

$$\mathbf{w} = \Sigma \ \alpha_n \cdot C_n \cdot \Phi(\mathbf{x}_n)$$
$$\Sigma \ \alpha_n \cdot C_n = 0$$
$$\mu_n = P - \alpha_n$$

• Substitution of these results in $L(\mathbf{w}, b, \alpha, \mu)$:

 $Z(\alpha) = \sum \alpha_n - \frac{1}{2} \cdot \sum \sum \alpha_n \cdot \alpha_m \cdot C_n \cdot C_m \cdot K(\mathbf{x}_n, \mathbf{x}_m) \rightarrow \min$ with constraints: $0 \le \alpha_n \le P$ and $\sum \alpha_n \cdot C_n = 0$

- Only difference to the case without slack variables:
 - Lagrange factors α_n also have to be $\leq P$

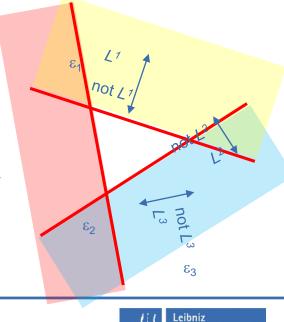
- Solution for the factors α_n by quadratic optimization
- Interpretation of α_n :
 - Samples with $\alpha_n = 0$ do not contribute to the classification
 - Samples with $\alpha_n > 0$: Support Vectors

 $\Rightarrow \alpha_n = P \text{ are located inside the margin or outside of the margin on the wrong side of } \varepsilon.$

- Calculation of *b*: only from support vectors with $0 < \alpha_n < P$
- Classification : analogous to the case without error in training data

SVM: Expansion to more than Two Classes

- SVM solves a binary problem
- There is no straight-forward expansion to the multi-class case
- Transition to more than two classes: "one against the rest"
 - For all classes L^k : Determine ε_k so that all classes but L^k provide the negative examples
 - Leads to N_c binary classifiers
 - Classification :
 - > Classify on the basis of all hyperplanes ε_k
 - Problem: ambiguities!



25

SVM: Expansion to More than Two Classes

- Transition to more than two classes: "one against one"
- For all pairs of classes L^j, L^k: Determine ε_{jk} from the training data of both classes
 - For N_c classes $\rightarrow N_c \cdot (N_c 1) / 2$ SVM classifiers!
 - Classification:

>Classify on the basis of all hyperplanes ε_{ik}

Count the votes for each class Lⁱ and select the class receiving the largest number of votes

- Takes longer in classification and training, can be parallelized

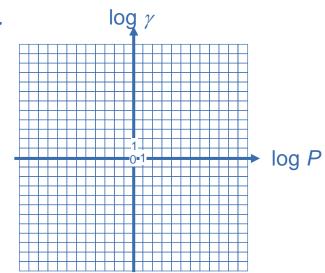
Ambiguities still exist, but they occur less frequently

Parameters

- For SVM, there are two groups of parameters that are not determined in the training procedure:
 - 1) Parameters of the kernel function (Gaussian kernel: $\gamma = \frac{1}{2} \cdot \sigma^{-2}$)
 - 2) Penalty term P
- These parameters are often specified by the user
- They should also be determined from the training data
- Approach : Grid search with cross-validation

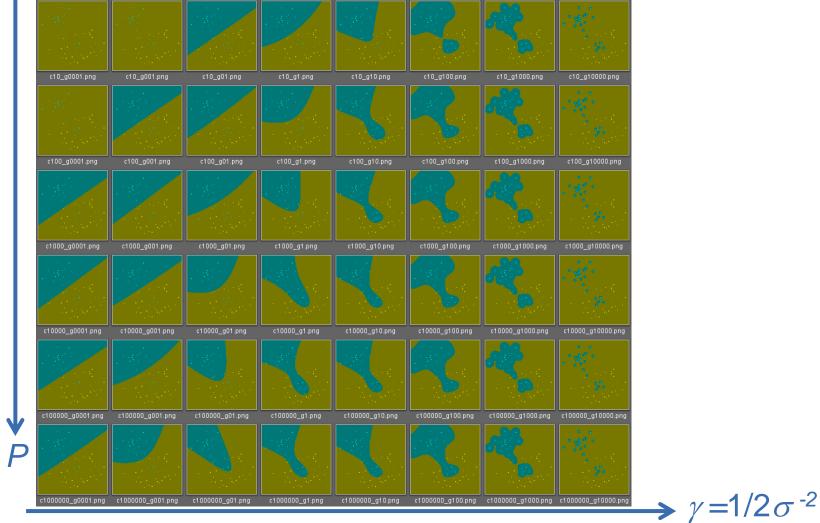
Grid Search with Cross-Validation

- In the parameter space all integer values for log *P* or log *γ* are investigated, e.g. between -15 and 15
- For every value pair, a SVM is learned from the training data
- Cross-validation:



- SVM is only trained using a part of the training data
- From the rest of the training data, the training error is determined (number of training samples assigned to the wrong class)
- Result: The value pair for P, γ for which the training error is minimal
 - Can be refined locally

Grid Search with Cross-Validation: Example



Created using the tool on http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Probabilities

- SVM provides no probabilities
- Classification for SVM:

 $C = \operatorname{sign}[\Sigma \ \alpha_n \cdot C_n \cdot K(\mathbf{x}_n, \mathbf{x}) + b] = \operatorname{sign}[f(\mathbf{x})]$

- The function f(x) depends on the distance d of Φ(x) from the decision boundary: f(x) = d · || w ||
- Note that d is a signed distance: C = sign(d)
- Remember: For logistic regression, the posterior probablity was determined as σ(d · || w ||)

(σ : logistic Sigmoid function)

Probabilities

- f(x) is a new feature and becomes an argument for the sigmoid function
- But we have to perform a linear transformation (because ||w|| is not known)

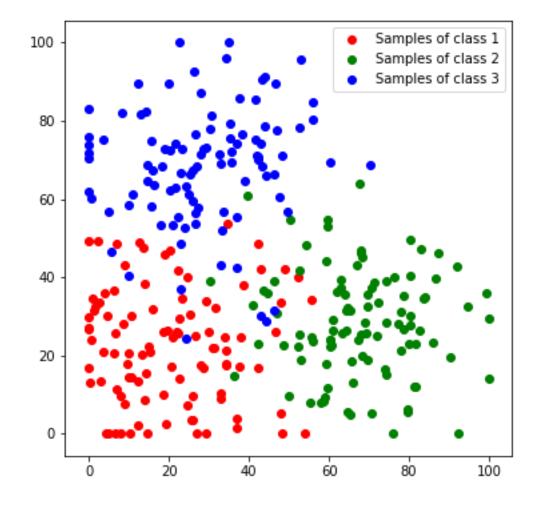
• Thus
$$P(C=1|\mathbf{x}) = \sigma(A \cdot f(\mathbf{x}) + B) = \frac{1}{1 + e^{-(A \cdot f(\mathbf{x}) + B)}}$$

- The parameters A, B are learned from training data
- For that purpose, one must use training samples that are **not** used to train the SVM
 - \rightarrow Again, the training data are divided into two groups

Training: see logistic regression

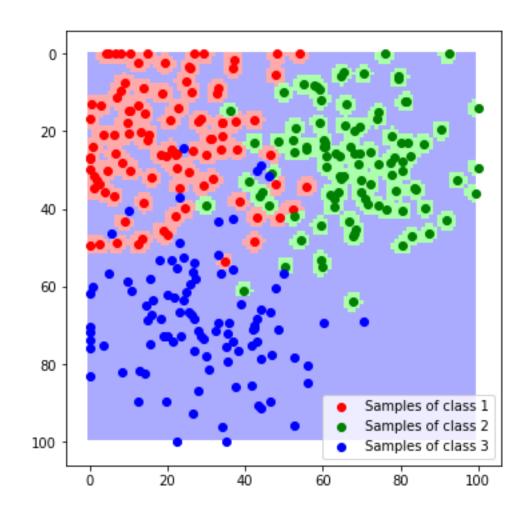
Examples

• Data set with 3 classes



Examples

- SVM trained with gamma = 1.0
- Weak regularization
- Results in a strongly overfitted model

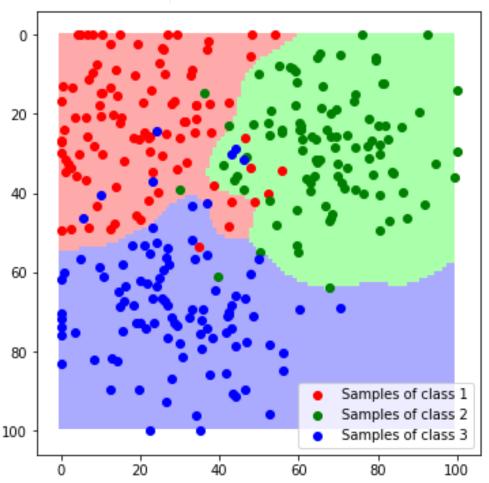


33

11 Leibniz 102 Universität 1004 Hannover

Examples

- SVM trained with gamma = 0.01
- A lower coefficient leads to
 a stronger regularization
- Here this leads to a much better model
- In general the hyperparameters should be optimized e.g. in a grid search



Support Vector Machines: Discussion

- SVM with Gauss-Kernel and slack variables provide good results
- SVM often serve as a baseline for comparison with other procedures
- Parameters of the kernel function and P must be determined
- Both of these parameters affect the smoothing of the decision boundary
- Problems of SVM:
 - The transition to more than two classes not obvious
 - Derivation of a quality indicator for the result
 - SVM is slow compared to Random Forests, especially during training

