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Support Vector Machines: Principle

• Binary classification : C  {-1, +1}

• Search for hyperplane e in feature space that 

seperates the classes in the training data:

e: wT · x + b = 0

w: normal vector

b: constant term

• Training: find w, b

• Classification: C = sign (wT · x + b)

• But: Which is the best hyper level for given training data? 
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Support Vector Machines: Principle

There are many possible hyperplanes…
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Support Vector Machines: Principle

• Margin: Region near the hyperplane without training data
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Support Vector Machines: Principle

• Maximum margin principle: 

Determine e so that the distance dSV

of e to the nearest training sample 

is maximized [Vapnik, 1998]

answer the question: Which is                                            

the best hyper level 

• The points with distance dSV of e are 

called Support Vectors (SV)

• Result depends on SVs only

• But: before training one does not know which samples are SVs
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• Feature Space Mapping F(x) if the                                               

classes are not linearly separable

• Binary classification: class C  {-1, +1}

• Hyperplane in the transformed feature 

space:

e: wT · F(x) + b = 0

• Distance dn of a point F(xn) from e:

dn =  || 1/ ||w|| · [wT · F(xn) + b] ||

• Distance of the plane from the origin: b / ||w|| 

• The length of w is undefined  How to scale w? 

Support Vector Machines: Hyperplane
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Support Vector Machines: Margin

• Scaling of w so that

wT · F(xn) + b = ±1 for SVs 

• Margin is limited by two planes e1, e2

which are parallel to e (same normal w)

e1 : w
T · F(xn) + b = +1

e2 : w
T · F(xn) + b = -1

or 

e1 : w
T · F(xn) + b - 1 = 0

e2 : w
T · F(xn) + b + 1 = 0
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Support Vector Machines: Margin Width

• Distances of the planes e1, e2 from

the origin 0: 

– e1 : w
T · F(xn) + b - 1 = 0

– e2 : w
T · F(xn) + b + 1 = 0

• Distance between the two planes: width of the margin 2 · dSV 
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Support Vector Machines: Maximum Margin 

Criterion
• Result: If we scale w as defined on the 

previous slides, maximising the margin 

is equivalent to

• Without considering the training data,

this would result in w = 0

• To obtain a meaningful solution, we

have to introduce constraints for the 

training data! 
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Support Vector Machines: Constraints

• Constraints for feature vectors xn

with class Cn = +1: 

– SVs are on plane e1

 wT · F(xn) + b = +1

– All other points have to be on the

side of e1 indicated by the direction

of w (because they have to be

classified correctly!)

 wT · F(xn) + b > +1

– Consequently: wT · F(xn) + b  +1 for Cn = +1

• Similarly: wT · F(xn) + b ≤  -1  for Cn = -1
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Support Vector Machines: Constraints

• Constraints: 

wT · F(xn) + b  +1 for Cn = +1

wT · F(xn) + b ≤  -1  for Cn = -1

• Multiplication of these inequalities by Cn 

yields a uniform representation for the 

constraints:  

Cn · [w
T · F(xn) + b]  1   xn

• The identity applies to the support vectors
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Support Vector Machines: Training

• We want to maximize the margin separating the training data given 

the constraints introduced by the training samples, thus

subject to Cn · [w
T · F(xn) + b]  1   xn

• This is mathematically difficult

• We solve the equivalent problem: ½ · ||w||2 = ½ · wT · w  min 

subject to the same constraints

• Optimization with inequalities as constraints

 Lagrange multipliers an  0 (one for each training sample), 

training data comes to play in the process of searching for best 

hyperplane via Lagrange multipliers 
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Support Vector Machines: Training

• New objective function to be minimized subject to an  0   xn: 

L(w, b, a) = ½ · wT · w – S an · {Cn · [wT · F(xn) + b] – 1}

• Derivatives:  dL / dw = w - S an · Cn · F(xn)

dL / db = – S an · Cn

dL / dw = 0  w = S an · Cn · F(xn)

dL / db = 0  S an · Cn = 0 

• Substituting this result in L leads to a new objective  function :

Z(a) = S an – ½ · S S an · am · Cn · Cm · F(xn)
T · F(xm)  min

with additional constraints : an  0 and S an · Cn = 0
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Support Vector Machines: Kernel Trick

• Kernel trick: Substitution of F(xn)
T · F(xm) by Kernel function

K(xn, xm) = F(xn)
T · F(xm)

• Examples: 

– Gaussian Kernel (also called “Radial Basis Function“, RBF): 

– Polynomial Kernel: 
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Support Vector Machines: Kernel Trick

• Advantages of applying the Kernel trick: 

– No need to define a Feature Space Mapping F(x) 

– No need to explicitly calculate F(x) or F(xn)
T · F(xm) 

– The feature space mapping is carried out implicitly by applying 

the kernel function to substitute for the inner product

– Implicitly, one can work in  very high-dimensional feature 

spaces without the additional computational burden

 SVM can (in principle) deal with an arbitrary number of 

clusters per class in feature space! 
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Support Vector Machines: Training

• Substituting the kernel function for the inner product we get:

Z(a) = S an – ½ · S S an · am · Cn · Cm · K(xn, xm)  min

with the constraints: an  0 and S an · Cn = 0

• Minimizing of Z(a) with consideration of constraints leads to a 

quadratic optimization problem [Vapnik, 1998]

• The parameters to be determined are the Lagrange factors an

• Support Vectors: training samples xn with an > 0 !!

• The result of training is the Lagrange factors and the parameter b!  
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Support Vector Machines: Training

• Determination of b from Support Vectors and an :

– Constraints for SV: CSV · [wT · F(xSV) + b ] = 1

– Using w = S an · Cn · F(xn)

 CSV · [S an · Cn · F(xn)
T · F(xSV) + b ] = 1

– Again: apply the Kernel function K(xn, xm) 

 CSV · [S an · Cn · K(xn, xSV) + b ] = 1

 There is one such equation for b per support vector 

 b is calculated from each support vector once

 Final value for b by averaging
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Support Vector Machines: Classification

• Classification: The class C for a feature vector x results from the 

sign of wT · F(x) + b:

C = sign[wT · F(x) + b] = sign[S an · Cn · F(xn)
T · F(x) + b]

• Again, the Kernel trick works: C = sign[S an · Cn · K(xn, x) + b]

• The sum only needs to be taken over SVs (because for all 

other training data an is 0, can be used inversely!)

• Transition to high dimensional feature space

 Can deliver non-linear boundaries in

the original feature space

e
C = +1 

C = -1 
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Support Vector Machines: Overfitting

• SVM can potentially separate all possible configurations of points

• Danger: 

– Overfitting

– Complex models requiring

too many parameters

( many SVs)

 Expansion of the model! 

C = -1 

C = +1 

e

Very unlikely shape of the decision boundary

 Stronger generalisation is desired
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SVM with Errors in the Training Data

• Introduction of a slack variable xn  0 for

every training sample with:

 xn = 0: Samples at the edge of the margin

or in the region assigned to Cn

 xn = 1: Samples on e

 xn < 1: Sample in the margin but on the correct side of e

 xn > 1: Samples on the wrong side of e, i.e. training samples

having a wrong class label

– For points inside the margin or on the wrong side of e, this 

definition implies  xn = |Cn – (wT · F(xn) + b) |

e

edge of margin
C = +1 

C = -1 

x = 1 

x = 0 

x > 1 x < 1 
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• Using these slack variables, the constraints become 

Cn · [wT · F(xn) + b ]   1 - xn

• Cost P > 0 for samples with xn > 0  penalise occurrence of too 

many outliers

• New objective function: P · S xn + ½ · ||w||2  min 

with constraints xn   0 

Cn · [wT · F(xn) + b ]   1 – xn

• Lagrange multipliers an  0 and mn  0

• Objective function to be minimized: 

L(w, b, a, m) = ½ · wT · w + P · S xn

– S an · {Cn · [wT · F(xn) + b] – 1 + xn} – S mn · xn

SVM with Errors in the Training Data
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• Again, we determine the first derivatives of the objective function by 

w, b and xn and set them to zero, which leads to: 

w = S an · Cn · F(xn)

S an · Cn = 0 

mn = P - an

• Substitution of these results in L(w, b, a, m):

Z(a) = S an – ½ · S S an · am · Cn · Cm · K(xn, xm)  min

with constraints: 0 ≤ an ≤ P and S an · Cn = 0

• Only difference to the case without slack variables: 

– Lagrange factors an also have to be ≤ P

SVM with Errors in the Training Data
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• Solution for the factors an by quadratic optimization

• Interpretation of an:

– Samples with an = 0 do not contribute to the classification

– Samples with an > 0: Support Vectors

 an < P: these samples are situated exactly at the edge of 

the margin, i.e. xn = 0

 an = P are located inside the margin or outside of the 

margin on the wrong side of e. 

• Calculation of b: only from support vectors with 0 < an < P

• Classification : analogous to the case without error in training data

SVM with Errors in the Training Data
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• SVM solves a binary problem

• There is no straight-forward expansion to the multi-class case

• Transition to more than two classes: “one against the rest“

– For all classes Lk: Determine ek so that all classes but Lk provide 

the negative examples

– Leads to Nc binary classifiers

– Classification : 

 Classify on the basis of all hyperplanes ek

 Problem: ambiguities! 

SVM: Expansion to more than Two Classes
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• Transition to more than two classes: “one against one“

• For all pairs of classes Lj, Lk : Determine ejk from the training data of 

both classes

– For Nc classes  Nc · (Nc - 1) / 2  SVM classifiers!

– Classification:

Classify on the basis of all hyperplanes ejk

Count the votes for each class Li and select the class 

receiving the largest number of votes

 Takes longer in classification and training, can be parallelized

 Ambiguities still exist, but they occur less frequently

SVM: Expansion to More than Two Classes
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• For SVM, there are two groups of parameters that are not 

determined in the training procedure:

1) Parameters of the kernel function (Gaussian kernel: 

g = ½ ·  -2)

2) Penalty term P

• These parameters are often specified by the user

• They should also be determined from the training data

• Approach : Grid search with cross-validation

Parameters
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• In the parameter space all integer values for                                     

log P or log g are investigated, 

e.g. between -15 and15

• For every value pair, a SVM is learned from 

the training data

• Cross-validation: 

– SVM is only trained using a part of the training data

– From the rest of the training data, the training error is determined 

(number of training samples assigned to the wrong class)

• Result: The value pair for P, g for which the training error is minimal

– Can be refined locally

Grid Search with Cross-Validation

log P

log g

10
1
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Created using the tool on http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Grid Search with Cross-Validation: Example

P

g =1/2 -2
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Probabilities

• SVM provides no probabilities

• Classification for SVM:  

C = sign[S an · Cn · K(xn, x) + b] = sign[f(x)]

• The function f(x) depends on the distance d of F(x) from the   

decision boundary: f(x) = d · || w ||

• Note that d ís a signed distance: C = sign(d) 

• Remember: For logistic regression, the posterior probablity was 

determined as  (d · || w ||) 

( : logistic Sigmoid function)
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Probabilities

• f(x) is a new feature and becomes an argument for the sigmoid 

function

• But we have to perform a linear transformation (because ||w|| is not 

known)

• Thus

• The parameters A, B are learned from training data

• For that purpose, one must use training samples that are not used 

to train the SVM

 Again, the training data are divided into two groups

Training: see logistic regression
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Examples

32

• Data set with 3 classes



Institute of Photogrammetry and GeoInformation

Examples
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• SVM trained with

gamma = 1.0

• Weak regularization

• Results in a strongly 

overfitted model
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Examples
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• SVM trained with

gamma = 0.01

• A lower coefficient leads to 

a stronger regularization

• Here this leads to a much

better model

• In general the

hyperparameters should

be optimized e.g. in a grid

search
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Support Vector Machines: Discussion

• SVM with Gauss-Kernel and slack variables provide good results

• SVM often serve as a baseline for comparison with other procedures

• Parameters of the kernel function and P must be determined

• Both of these parameters affect the smoothing of the decision 

boundary

• Problems of SVM:

– The transition to more than two classes not obvious

– Derivation of a quality indicator for the result

– SVM is slow compared to Random Forests, especially during 

training
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