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• The human brain is very good at interpreting scenes

• The human brain consists of relatively simple nerve cells (neurons), 

but  these are strongly interconnected

• Assumption: The performance of the brain is related to this strong 

connectedness 

• Attempt to simulate these network structures in pattern recognition     

 neural networks

• Research on neural networks started in the 1940s

• Since the 1960s, they have gone in and out of fashion several times

• Currently: Convolutional Neural Networks (CNN), deep learning

Artifical Model of a Neuron: Motivation
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• Input variables xi: Components of the feature vector x

• Each input variable is multiplied with a weight wji; 

Determine weighted sum  zj = S wji · xi + bj = wj
T · x + bj

• bj: Bias, considered to be a component of each feature vector

x = [xT 1]T and wj = [wj
T bj]

T

Simplified notation : 

zj = wj
T · x

• Output aj of the neuron j: 

aj = f(zj) = f(wj
T · x)

with f(zj) … activation function

Artificial Model of a Neuron
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• Binary classification, Class C = f(x), i.e. C  {-1, +1},  

• Perceptron(can be interpreted as): a binary classifier based on a 

single neuron

• Example (two features x1, x2): 

• Output: Class label C = f(wT · x + wb)

– Use step function as activation function  C = (wT · x + wb) > 0

– The decision boundary is a (hyper-) plane

The Perceptron: Binary Classification 

example
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• Simplest possible neural network, consisting of one neuron 

• Input: Vector F(x) 

– Derived by some (pre-defined) feature space mapping

– One component of F(x) is equivalent to the bias (value 1)

• Activation function:  f(a) =

• Output: a(x) = f(wT · F(x))

• Wanted: Weights w of the perceptron

• One could try to determine w by minimizing the number of training 

samples that are assigned to the wrong class

• Problem: the activation function is a step function

The Perceptron

+1 if a  0

-1 if a < 0
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Supervised Learning: Perceptron

• Causes due to the activation function problem: one cannot 

compute gradients, and Gradient descent is impossible

• Better choice: apply the perceptron criterion according to 

Rosenblatt (1962!) 

• Perceptron criterion: Minimize the error function

Ep(w) = S max(0, -[wT· F(xn)] · Cn)

• Note that for a sample that is classified correctly, the max() function 

will return 0 and the sample will not contribute to the error

• The error [wT· F(xn)] · Cn is a linear function in regions where xn is 

misclassified 

 the error function is piecewise linear

 gradient descent methods can be applied
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Supervised Learning: Perceptron

• Minimize the error function En(w) = -S [wT· F(xn)] · Cn using 

stochastic gradient descent:

– Initialize the weights with random values: w(0)

– As long as the minimum of En(w) is not found, loop through the 

training data:

• Select a training sample xn with class Cn

• Classify xn using the current values of w  class C‘n

• If C‘n Cn: Determination of new weights:

w(t+1) = w(t) – h · En(w
(t)) = w(t) + h · F(xn) · Cn

with h … learning rate (can be set to 1 in this case)

• This procedure is guaranteed to converge (… but may be slow)
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Supervised Learning: Perceptron - Example
• Start: initial vector w(0) (black), randomly selected training 

sample xn assigned to the wrong class (green circle). 

• Red vector: error vector of the misclassified sample (h =1), it is 

added to w(0) to obtain w(1) in iteration 1
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Supervised Learning: Perceptron - Example

• Centre: Red vector: error vector of another misclassified sample 

(h =1), it is added to w(1) to obtain w(2) in iteration 2
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• Perceptron delivers a hyperplane as decision boundary

• Single layer perceptron only works if the classes are linearly 

separable in feature space 

• Example for 2D feature space mapping F(x) = (F1(x), F2(x))T

linearly separable not linearly separable

Geometrical Interpretation of the Perceptron

wT · F(x)+ b = 0

F1(x)

F2(x)

F1(x)

F2(x)

w

b / ||w||

wT · F(x) + b < 0

wT · F(x) + b > 0

11



Institute of Photogrammetry and GeoInformation

Neural Networks: Multilayer Perceptron

• What if more complex decision boundaries are needed: Networks 

consisting of several layers of neurons

• Example: two layers and “feed forward“ - architecture

• Input: features xi

• Hidden layer with neurons zj: 

zj = f(S wji
(1) · xi)

• Output: degree of membership to class Ck

yk =f(S wki
(2) · zi)

• Extension to more "hidden layers“  Multilayer Perceptron (MLP)
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Geometrical Interpretation of Multi-layered 

Networks
• Hidden layers act as feature space 

mapping with adaptive functions F

• Feature space mapping can be learnt

• Example:

Source: [Borgelt et al., 2003]
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Training Neural Networks: MLP

• Given: N feature vectors xn with a class membership vector Cn

 1-in-K representation: Cn = [Cn
1, … Cn

K]T and Cn
k  {0,1}, 

 Cn
k = 1, if xn belongs to class Ck

• Wanted: Weights w of the multi-layer network

• Activation function: 

 Today, usually ReLu

 Output layer: softmax

• Output layer delivers membership ynk

of the xn for each class Ck: 

ynk = f(w, xn)

• What are the options for the activation functions
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Activation Functions

• Step function: 

• Logistic sigmoid function:

• Rectified Linear Unit (ReLu):

+1 if  a  0

0 if  a < 0
f(a) = 

f(a) = s(a) =

with f‘(a) = f(a) · [1 – f(a)]

1 

1 + e-a
0

0,5

1

-5,0 -4,0 -3,0 -2,0 -1,0 0,0 1,0 2,0 3,0 4,0 5,0
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Training Neural Networks: Loss Function

• Membership ynk of the feature vector xn to class Lk: ynk = f(w, xn)

• Definition of an loss (error) function for xn , e.g.:

• Example (3 classes; training sample belongs to class L2)
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Training Neural Networks: Minibatch Learning

• Total loss function: sum over all training samples: 

Optimization: stochastic gradient descent [Bishop, 2006]

w(t+1) = w(t) – h · E(w(t))

• Gradient descent is mainly used in the minibatch version

 Minibatch: a small (random) subset of the training samples

 Minibatch size: e.g.128; important hyperparameter

 In iteration t, the sum in E(w) is taken over all  samples of the 

minibatch
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Training Neural Networks: Initialisation

• Preprocessing of all training samples:

 Subtract mean from feature values  features with zero mean

 Numerical reasons!  

• Initialization of the weights w(0) : 

 small random numbers , e.g. Gaussians with zero mean

 Xavier initialization [Glorot et al., 2010]:

with  Ni: number of input neurons of layer i

 Better option for ReLu [He et al., 2015]: 

 Initialisation is important, but may be tricky
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Training Neural Networks: Gradient Descent

• Gradient descent with minibatches to minimize the error function

• As long as the minimum of E(w) is not found:

 Randomly choose a minibatch

 Determine output ynk of the neuronal network for each sample 

xn of the current minibatch using the current values of w

 New weights: w(t+1) = w(t) – h · [Sn En(w
(t))] with h … 

learning rate, t… Iteration count

 The sum to compute the gradient is taken over all samples of

the minibatch.
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Training Neural Networks: Gradients

• The components of the gradients are the derivatives

• Remember: in a neuron j, the signals coming from the input layer ai

are converted into an output aj: 

aj = f(Ij) = f (S wji · ai)

• Chain rule:

 i.e. the signal arriving at neuron j from the neuron i

  dj: Different for hidden layers and the output layer 
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Training Neural Networks: Gradients

• dk  for neuron k in the output layer: 

dk = [ynk(w, xn) –Ln
k] · f’(Ik)

i.e. dk is proportional to the classification error

• dj  for neuron j in a hidden layer:

where k is an index running over all units to which neuron j sends an 

output
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Training Neural Networks: Back-propagation

• Back-propagation for computing the gradients: 

– Forward step: 

• Calculate output ynk from xn and the current values of w

• Save the output aj as well as f‘(Ij) in every neuron j

• The classification error anddk is calculated from ynk

– Actual back-propagation:

• dj is calculated from dk and f‘(lj) successively for

each layer from dj and aj:

.
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Training Neural Networks: Regularisation

• Gradient descent might lead to overfitting 

• Regularisation: weights should not take very large numerical values

• Expansion of the loss function: 

classification loss           regularisation term

• This type of regularisation is called “weight decay“ with parameter l

• Also has to be considered in gradient computation
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Training Neural Networks: Momentum

• Gradients from minibatches may be noisy 

 May result in slow convergence, may get stuck in local minima

• Solution: Use momentum! 

 Consider “velocity“ v from average change in previous updates

 Initialisation: w(0) as discussed earlier,   v(0) = 0

 Update:  v(t+1) = r · v(t) + E(w(t))

w(t+1) = w(t) - h · v(t+1) 

 Friction parameter r : e.g. 0.9 or 0.99

 Faster convergence: Nesterov momentum [Suskever et al., 

2013]
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Training Neural Networks: Learning rate

• Learning rate h in gradient descent is an important hyperparameter

• Needs to be tuned carefully! 

• Good h leads to … 

 Fast convergence

 Strong minimum of E

• Adapt hin the iteration

process 

• Example: 

exponential decay with 

small e
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Probabilities

• For multiclass-problems, for each class Lk there is a neuron yk in the 

output layer

• The output of yk is interpreted as the membership value of class Lk

• An interpretation as a posterior probability can be derived if the 

outputs are normalized
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Discussion

• Neural networks had gone out of fashion compared to procedures 

such as SVM or random forests: 

– Networks with few layers: not adaptable enough

– Networks with many neurons: numerical problems in the 

determination of the parameters

• Neural networks have come back in the context of “Deep Learning“ 

– Networks with many layers (“deep" networks), many neurons

– Sharing of weights  Convolutional Neural Networks (CNN)

– Improved initialisation and learning

– Implementation on graphics card (GPU)

– Availability of large databases of annotated images for training
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