Neural Network Basic

Non-probabilistic discriminative classifier

Content

- Artificial Model of a Neuron
- The Perceptron
- Neural Networks: Multilayer Perceptron
- Training Neural Networks
- Probabilities
- Discussion

Artifical Model of a Neuron: Motivation

- The human brain is very good at interpreting scenes
- The human brain consists of relatively simple nerve cells (neurons), but these are strongly interconnected
- Assumption: The performance of the brain is related to this strong connectedness
- Attempt to simulate these network structures in pattern recognition \rightarrow neural networks
- Research on neural networks started in the 1940s
- Since the 1960s, they have gone in and out of fashion several times
- Currently: Convolutional Neural Networks (CNN), deep learning

Artificial Model of a Neuron

- Input variables *xⁱ* : Components of the feature vector **x**
- Each input variable is multiplied with a weight *wji*; Determine weighted sum $z_j = \sum w_{ji} \cdot x_j + b_j = w_j^T \cdot x + b_j^T$
- *b^j* : Bias, considered to be a component of each feature vector \rightarrow **x** = $[\mathbf{x}^T$ 1]^T and **w**_j = $[\mathbf{w}_j^T$ *b_j*]^T Simplified notation : $Z_j = \mathbf{W}_j^{\mathsf{T}} \cdot \mathbf{X}$ *x1* W_{i1} Input Neuron j Output
- Output *a^j* of the neuron *j*: $a_j = f(z_j) = f(\mathbf{w}_j^\top \cdot \mathbf{x})$

with *f*(*z^j*) … activation function

The Perceptron: Binary Classification example

- Binary classification, Class $C = f(x)$, i.e. $C \in \{-1, +1\}$,
- Perceptron (can be interpreted as): a binary classifier based on a single neuron

- Output: Class label $C = f(\mathbf{w}^T \cdot \mathbf{x} + w_b)$
	- Use step function as activation function $\rightarrow C = (\mathbf{w}^T \cdot \mathbf{x} + w_b) > 0$
	- The decision boundary is a (hyper-) plane

The Perceptron

- Simplest possible neural network, consisting of one neuron
- Input: $Vector \Phi(\mathbf{x})$
	- Derived by some (pre-defined) feature space mapping
	- One component of $\Phi(x)$ is equivalent to the bias (value 1)
- Activation function: *f*(*a*) = $+1$ if $a \ge 0$
- Output: $a(\mathbf{x}) = f(\mathbf{w}^T \cdot \Phi(\mathbf{x}))$ -1 if *a* < 0
- Wanted: Weights **w** of the perceptron
- One could try to determine **w** by minimizing the number of training samples that are assigned to the wrong class
- Problem: the activation function is a step function

Supervised Learning: Perceptron

- Causes due to the activation function problem: one cannot compute gradients, and Gradient descent is impossible
- Better choice: apply the perceptron criterion according to Rosenblatt (1962!)
- Perceptron criterion: Minimize the error function $E_p(\mathbf{w}) = \sum \max(0, -[\mathbf{w}^T \cdot \Phi(\mathbf{x}_n)] \cdot C_n$
- Note that for a sample that is classified correctly, the max() function will return 0 and the sample will not contribute to the error
- The error $[w^T \cdot \Phi(x_n)] \cdot C_n$ is a linear function in regions where x_n is misclassified
	- \rightarrow the error function is piecewise linear
	- \rightarrow gradient descent methods can be applied

Supervised Learning: Perceptron

- Minimize the error function $E_n(\mathbf{w}) = -\sum [\mathbf{w}^T \cdot \Phi(\mathbf{x}_n)] \cdot C_n$ using stochastic gradient descent:
	- Initialize the weights with random values: **w**(0)
	- As long as the minimum of *Eⁿ* (**w**) is not found, loop through the training data:
		- Select a training sample **x**_n with class C_n
		- Classify \mathbf{x}_n using the current values of $\mathbf{w} \to \text{class } C_n'$
		- If $C'_n \neq C_n$: Determination of new weights:

 $\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \cdot \nabla E_n(\mathbf{w}^{(\tau)}) = \mathbf{w}^{(\tau)} + \eta \cdot \Phi(\mathbf{x}_n) \cdot C_n$

with η ... learning rate (can be set to 1 in this case)

• This procedure is guaranteed to converge (… but may be slow)

Supervised Learning: Perceptron - Example

- **Start**: initial vector $w^{(0)}$ (black), randomly selected training sample **x**_n assigned to the wrong class (green circle).
- Red vector: error vector of the misclassified sample $(\eta =1)$, it is added to $w^{(0)}$ to obtain $w^{(1)}$ in iteration 1

Institute of Photogrammetry and GeoInformation 9

niversität

Supervised Learning: Perceptron - Example

• **Centre**: Red vector: error vector of another misclassified sample $(\eta =1)$, it is added to **w**⁽¹⁾ to obtain **w**⁽²⁾ in iteration 2

Hannover

Geometrical Interpretation of the Perceptron

- Perceptron delivers a hyperplane as decision boundary
- Single layer perceptron only works if the classes are linearly separable in feature space
- Example for 2D feature space mapping $\Phi(\mathbf{x}) = (\Phi_1(\mathbf{x}), \Phi_2(\mathbf{x}))^T$

niversität

Neural Networks: Multilayer Perceptron

- What if more complex decision boundaries are needed: Networks consisting of several layers of neurons
- Example: two layers and "feed forward" architecture
- Input: features *xⁱ*
- Hidden layer with neurons z_j:

$$
Z_j = f(\sum w_{ji}^{(1)} \cdot x_i)
$$

• Output: degree of membership to class *C^k*

*y*_{*k*} = *f*(Σ *w*_{*ki*}⁽²⁾ · *z*_{*i*})

 $W_{11}^{(1)}$ Input "hidden layers" Outputs *z*

• Extension to more "hidden layers" \rightarrow **Multilayer Perceptron (MLP)**

Geometrical Interpretation of Multi-layered Networks

- Hidden layers act as feature space mapping with adaptive functions Φ
- **Feature space mapping can be learnt**
- Example:

13

Training Neural Networks: MLP

- Given: *N* feature vectors x_n with a class membership vector C_n
	- $-$ 1-in-*K* representation: $C_n = [C_n^1, \ldots C_n^K]^T$ and $C_n^k \in \{0,1\}$,
	- $-C_n^k = 1$, if \mathbf{x}_n belongs to class C^k
- Wanted: Weights **w** of the multi-layer network
- Activation function:
	- Today, usually ReLu
	- Output layer: softmax
- Output layer delivers membership *ynk* of the \mathbf{x}_n for each class C^k :

$$
y_{nk} = f(\mathbf{w}, \mathbf{x}_n)
$$

What are the options for the activation functions

14

Activation Functions

• Step function:

$$
f(a) = \left\{ \begin{array}{cl} +1 \text{ if } a \geq 0 \\ 0 \text{ if } a < 0 \end{array} \right.
$$

- Logistic sigmoid function: $f(a) = \sigma(a) =$ with $f'(a) = f(a) \cdot [1 - f(a)]$ 1 1 + e*-a* ⁰
- Rectified Linear Unit (ReLu):

Training Neural Networks: Loss Function

- Membership y_{nk} of the feature vector \mathbf{x}_n to class L^k : $y_{nk} = f(\mathbf{w}, \mathbf{x}_n)$
- Definition of an loss (error) function for x_n , e.g.: $(\mathbf{w}, \mathbf{x}_n) = \frac{1}{2} \cdot \sum (\mathbf{y}_{nk} (\mathbf{w}, \mathbf{x}_n) - \mathbf{L}_n^k)^2$ 2 $1 \cdot \sqrt{2}$ $2 \left($ $\frac{1}{k}$ $\binom{3}{k}$ $\binom{n}{k}$ $\binom{n}{k}$ $\binom{n}{k}$ $\binom{n}{k}$ $k \geq 1$ $n \left(\mathbf{w}, \mathbf{w}_n \right) = \mathbf{w} \times \mathbf{w} \mathbf{w}_n \mathbf{w}_n \mathbf{w}_n \mathbf{w}_n$ *k* $E_n(\mathbf{w}, \mathbf{x}_n) = \frac{1}{2} \cdot \sum_{n=1}^{n} (y_{nk}(\mathbf{w}, \mathbf{x}_n) - L_n^k)^T$
- Example (3 classes; training sample belongs to class *L 2*)

Training Neural Networks: Minibatch Learning

• Total loss function: sum over all training samples:

$$
E(\mathbf{w}) = \sum_{n} E_{n}(\mathbf{w}, \mathbf{x}_{n}) = \frac{1}{2} \cdot \sum_{n,k} (y_{nk}(\mathbf{w}, \mathbf{x}_{n}) - L_{n}^{k})^{2} \rightarrow \text{min}
$$

Optimization: stochastic gradient descent [Bishop, 2006]

 $\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \, \cdot \, \nabla E(\mathbf{w}^{(\tau)})$

- Gradient descent is mainly used in the **minibatch version**
	- Minibatch: a small (random) subset of the training samples
	- Minibatch size: e.g.128; important hyperparameter
	- $-In$ iteration τ , the sum in $E(w)$ is taken over all samples of the minibatch

Training Neural Networks: Initialisation

- **Preprocessing** of all training samples:
	- $-$ Subtract mean from feature values \rightarrow features with **zero mean**
	- Numerical reasons!
- Initialization of the weights $w^{(0)}$:
	- small random numbers, e.g. Gaussians with zero mean
	- Xavier initialization [Glorot et al., 2010]:

with *N_i*: number of input neurons of layer *i* $\sigma = 1$ *Ni*

- Better option for ReLu [He et al., 2015]: $\sigma = \sqrt{2/\sqrt{3}}$ *Ni*
- Initialisation is important, but may be tricky

Training Neural Networks: Gradient Descent

- Gradient descent with minibatches to minimize the error function $(\mathbf{w}) = \frac{1}{2} \cdot \sum_{n,k} \left(\mathbf{y}_{nk} \left(\mathbf{w}, \mathbf{x}_n \right) - \mathbf{L}_n^k \right)^2$ 2 $k \geq$ *nk n n* $E(\mathbf{w}) = \frac{1}{n} \cdot \sum_{k} (y_{nk}(\mathbf{w}, \mathbf{x}_n) - L_n^k)^{-1}$
- As long as the minimum of *E*(**w**) is not found:
	- \triangleright Randomly choose a minibatch
	- Determine output *ynk* of the neuronal network for each sample **x**ⁿ of the current minibatch using the current values of **w**
	- \triangleright New weights: $w^{(\tau+1)} = w^{(\tau)} \eta \cdot \nabla[\Sigma_n E_n(w^{(\tau)})]$ with η ... learning rate, τ ... Iteration count
	- \triangleright The sum to compute the gradient is taken over all samples of the minibatch.

 $n.k$

Training Neural Networks: Gradients

- The components of the gradients are the derivatives
- Remember: in a neuron *j*, the signals coming from the input layer *aⁱ* are converted into an output a_j:

$$
a_j = f(I_j) = f(\sum w_{ji} \cdot a_i)
$$

• Chain rule: $\frac{\partial E_n}{\partial t_j} = \frac{\partial E_n}{\partial t_j} \cdot \frac{\partial I_j}{\partial t_j} \cdot a_i \cdot w_{ij} \cdot a_j$

- $\frac{U_i}{V_i}$ = $\frac{1}{2}$ i.e. the signal arriving at neuron *j* from the neuron *i . . ai aj* δ_1 ∂ *W_{ji}* $=\frac{v-n}{2}$. *I j* ∂ *w*_{ji} *I j* ∂W_{jj} *= aⁱ*
	- $\partial E_n = \delta_j$: Different for hidden layers and the output layer *I j*

.

 $\delta_{\pmb{k}}$

 $\partial E_{\sf n}({\sf w})$

 $\overline{\partial}$ W_{jj}

w

kj

Training Neural Networks: Gradients

•
$$
\delta_k = \frac{\partial E_n}{\partial I_k}
$$
 for neuron *k* in the output layer:
\n
$$
\delta_k = [y_{nk}(\mathbf{w}, \mathbf{x}_n) - L_n^k] \cdot f'(I_k)
$$
\ni.e. δ_k is proportional to the classification error
\n• $\delta_j = \frac{\partial E_n}{\partial I_j}$ for neuron *j* in a hidden layer:
\n
$$
\delta_j = \sum_k \frac{\partial E_n}{\partial I_k} \cdot \frac{\partial I_k}{\partial I_j} = f'(I_j) \cdot \sum_k w_{kj} \cdot \delta_k
$$
\nwhere *k* is an index running over all units to which

neuron *j* sends an output

Training Neural Networks: Back-propagation

- Back-propagation for computing the gradients:
	- Forward step:
		- Calculate output *ynk* from **x**ⁿ and the current values of **w**
		- Save the output a_j as well as $f'(l_j)$ in every neuron *j*
		- The classification error and δ_k is calculated from y_{nk}
	- Actual back-propagation:
		- δ_j is calculated from δ_k and $f'(l_j)$ successively for each layer from δ_j and a_j : d*k*

$$
\frac{\partial E_n}{\partial w_{ji}} = \delta_j \cdot a_j \qquad a_i \xrightarrow{w_{ji} \delta_i} a_j
$$

Training Neural Networks: Regularisation

- Gradient descent might lead to overfitting
- Regularisation: weights should not take very large numerical values
- Expansion of the loss function:

classification loss regularisation term + ^l 2 2 , , 1 , ² *k nk n n ij n k i j E***w** *y L w* **w x**

- This type of regularisation is called "weight decay" with parameter λ
- Also has to be considered in gradient computation

Training Neural Networks: Momentum

- Gradients from minibatches may be noisy
	- May result in slow convergence, may get stuck in local minima
- Solution: Use **momentum**!
	- Consider "velocity" **v** from average change in previous updates
	- Initialisation: **w**(0) as discussed earlier, **v** (0) = **0**
	- Update: **v** $\mathbf{v}^{(\tau+1)} = \rho \cdot \mathbf{v}^{(\tau)} + \nabla E(\mathbf{w}^{(\tau)})$

$$
\mathbf{W}^{(\tau+1)} = \mathbf{W}^{(\tau)} - \eta \cdot \mathbf{V}^{(\tau+1)}
$$

- *Friction* parameter ρ : e.g. 0.9 or 0.99
- Faster convergence: Nesterov momentum [Suskever et al., 2013]

Training Neural Networks: Learning rate

- Learning rate η in gradient descent is an important hyperparameter
- Needs to be tuned carefully!
- Good η leads to \dots
	- Fast convergence
	- Strong minimum of *E*
- Adapt η in the iteration process
- Example: exponential decay with small ε $\eta = \eta_0 \cdot (1 - \varepsilon)^{k \cdot \tau}$ and leaving τ and the state of τ $\lim_{\epsilon \to 0} \frac{\varepsilon}{\sqrt{1-\varepsilon}}$ (1 - ε)^{k. τ}

Probabilities

- For multiclass-problems, for each class *L k* there is a neuron *y^k* in the output layer
- The output of y_k is interpreted as the membership value of class L^k
- An interpretation as a posterior probability can be derived if the outputs are normalized

$$
P\left(\mathbf{C} = \mathbf{L}^k \mid \mathbf{x}\right) = \frac{\mathbf{y}_k}{\sum_{k} \mathbf{y}_k}
$$

Discussion

- Neural networks had gone out of fashion compared to procedures such as SVM or random forests:
	- Networks with few layers: not adaptable enough
	- Networks with many neurons: numerical problems in the determination of the parameters
- Neural networks have come back in the context of "**Deep Learning**"
	- Networks with many layers ("deep" networks), many neurons
	- Sharing of weights \rightarrow Convolutional Neural Networks (CNN)
	- Improved initialisation and learning
	- Implementation on graphics card (GPU)
	- Availability of large databases of annotated images for training

