Neural Network Basic

Non-probabilistic discriminative classifier

Content

- Artificial Model of a Neuron
- The Perceptron
- Neural Networks: Multilayer Perceptron
- Training Neural Networks
- Probabilities
- Discussion

Artifical Model of a Neuron: Motivation

- The human brain is very good at interpreting scenes
- The human brain consists of relatively simple nerve cells (neurons), but these are strongly interconnected
- Assumption: The performance of the brain is related to this strong connectedness
- Attempt to simulate these network structures in pattern recognition

 neural networks
- Research on neural networks started in the 1940s
- Since the 1960s, they have gone in and out of fashion several times
- Currently: Convolutional Neural Networks (CNN), deep learning

Artificial Model of a Neuron

- Input variables x_i : Components of the feature vector **x**
- Each input variable is multiplied with a weight \underline{w}_{ji} ; Determine weighted sum $z_j = \sum \underline{w}_{ji} \cdot \underline{x}_i + b_j = \underline{w}_j^T \cdot \underline{x} + b_j$
- b_j : Bias, considered to be a component of each feature vector $\Rightarrow \mathbf{x} = [\mathbf{x}^T \ 1]^T$ and $\mathbf{w}_j = [\mathbf{w}_j^T \ b_j]^T$ \Rightarrow Simplified notation : $z_j = \mathbf{w}_j^T \cdot \mathbf{x}$ Input $x_1 \quad w_{j1}$ Input w_{j1}
- Output a_j of the neuron j:

 $a_j = f(z_j) = f(\mathbf{w}_j^T \cdot \mathbf{x})$ with $f(z_j)$... activation function

The Perceptron: Binary Classification example

- Binary classification, Class $C = f(\mathbf{x})$, i.e. $C \in \{-1, +1\}$,
- Perceptron(can be interpreted as): a binary classifier based on a single neuron

- Output: Class label $C = f(\mathbf{w}^T \cdot \mathbf{x} + w_b)$
 - Use step function as activation function $\rightarrow C = (\mathbf{w}^T \cdot \mathbf{x} + w_b) > 0$
 - The decision boundary is a (hyper-) plane

The Perceptron

- Simplest possible neural network, consisting of one neuron
- Input: Vector $\Phi(\mathbf{x})$
 - Derived by some (pre-defined) feature space mapping
 - One component of $\Phi(\mathbf{x})$ is equivalent to the bias (value 1)
- Activation function: f(a) =
- +1 if a ≥ 0 -1 if a < 0 • Output: $a(\mathbf{x}) = f(\mathbf{w}^{\mathsf{T}} \cdot \Phi(\mathbf{x}))$
- Wanted: Weights w of the perceptron
- One could try to determine w by minimizing the number of training samples that are assigned to the wrong class
- Problem: the activation function is a step function

Supervised Learning: Perceptron

- Causes due to the activation function problem: one cannot compute gradients, and Gradient descent is impossible
- Better choice: apply the perceptron criterion according to Rosenblatt (1962!)
- Perceptron criterion: Minimize the error function $E_p(\mathbf{w}) = \sum \max(0, -[\mathbf{w}^T \cdot \Phi(\mathbf{x}_n)] \cdot C_n)$
- Note that for a sample that is classified correctly, the max() function will return 0 and the sample will not contribute to the error
- The error $[\mathbf{w}^T \cdot \Phi(\mathbf{x}_n)] \cdot C_n$ is a linear function in regions where \mathbf{x}_n is misclassified
 - \rightarrow the error function is piecewise linear
 - → gradient descent methods can be applied

Supervised Learning: Perceptron

- Minimize the error function $E_n(\mathbf{w}) = -\Sigma [\mathbf{w}^T \cdot \Phi(\mathbf{x}_n)] \cdot C_n$ using stochastic gradient descent:
 - Initialize the weights with random values: $\mathbf{w}^{(0)}$
 - As long as the minimum of $E_n(\mathbf{w})$ is not found, loop through the training data:
 - Select a training sample \mathbf{x}_n with class C_n
 - Classify \mathbf{x}_n using the current values of $\mathbf{w} \rightarrow$ class C'_n
 - If $C'_n \neq C_n$: Determination of new weights:

 $\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \cdot \nabla E_n(\mathbf{w}^{(\tau)}) = \mathbf{w}^{(\tau)} + \eta \cdot \Phi(\mathbf{x}_n) \cdot C_n$

with η ... learning rate (can be set to 1 in this case)

• This procedure is guaranteed to converge (... but may be slow)

Supervised Learning: Perceptron - Example

- Start: initial vector w⁽⁰⁾ (black), randomly selected training sample x_n assigned to the wrong class (green circle).
- Red vector: error vector of the misclassified sample (η =1), it is added to w⁽⁰⁾ to obtain w⁽¹⁾ in iteration 1

lannover

Supervised Learning: Perceptron - Example

Centre: Red vector: error vector of another misclassified sample (η =1), it is added to w⁽¹⁾ to obtain w⁽²⁾ in iteration 2

Geometrical Interpretation of the Perceptron

- Perceptron delivers a hyperplane as decision boundary
- Single layer perceptron only works if the classes are linearly separable in feature space
- Example for 2D feature space mapping $\Phi(\mathbf{x}) = (\Phi_1(\mathbf{x}), \Phi_2(\mathbf{x}))^T$

Neural Networks: Multilayer Perceptron

- What if more complex decision boundaries are needed: Networks consisting of several layers of neurons
- Example: two layers and "feed forward" architecture
- Input: features x_i
- Hidden layer with neurons z_i :

$$z_j = f(\Sigma \ W_{ji}^{(1)} \cdot x_j)$$

• Output: degree of membership to class *C^k*

 $y_k = f(\Sigma \ W_{ki}^{(2)} \cdot z_i)$

Input "hidden layers" Outputs $x \bigcirc \frac{W_{11}^{(1)} z}{2} W_{11}^{(2)}$

Extension to more "hidden layers" → Multilayer Perceptron (MLP)

Geometrical Interpretation of Multi-layered Networks

- Hidden layers act as feature space mapping with adaptive functions Φ
- Feature space mapping can be learnt
- Example:

13

Training Neural Networks: MLP

- Given: N feature vectors x_n with a class membership vector C_n
 - 1-in-*K* representation: $\mathbf{C}_n = [C_n^1, \dots C_n^K]^T$ and $C_n^k \in \{0, 1\}$,
 - $-C_n^k = 1$, if \mathbf{x}_n belongs to class C^k
- Wanted: Weights w of the multi-layer network
- Activation function:
 - Today, usually ReLu
 - Output layer: softmax
- Output layer delivers membership y_{nk} of the \mathbf{x}_n for each class C^k :

$$y_{nk} = f(\mathbf{w}, \mathbf{x}_n)$$

What are the options for the activation functions

14

Activation Functions

• Step function:

$$f(a) = \begin{cases} +1 & \text{if } a \ge 0 \\ 0 & \text{if } a < 0 \end{cases}$$

- Logistic sigmoid function: $f(a) = \sigma(a) = \frac{1}{1 + e^{-a}}$ with $f'(a) = f(a) \cdot [1 - f(a)]$
- Rectified Linear Unit (ReLu):

 $f(a) = \max(0, a)$

Training Neural Networks: Loss Function

- Membership y_{nk} of the feature vector \mathbf{x}_n to class L^k : $y_{nk} = f(\mathbf{w}, \mathbf{x}_n)$
- Definition of an loss (error) function for \mathbf{x}_n , e.g.: $E_n(\mathbf{w}, \mathbf{x}_n) = \frac{1}{2} \cdot \sum_k (y_{nk}(\mathbf{w}, \mathbf{x}_n) - L_n^k)^2$
- Example (3 classes; training sample belongs to class L^2)

Training Neural Networks: Minibatch Learning

• Total loss function: sum over all training samples:

$$E(\mathbf{w}) = \sum_{n} E_{n}(\mathbf{w}, \mathbf{x}_{n}) = \frac{1}{2} \cdot \sum_{n,k} (y_{nk}(\mathbf{w}, \mathbf{x}_{n}) - L_{n}^{k})^{2} \rightarrow \min$$

Optimization: stochastic gradient descent [Bishop, 2006]

 $\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \cdot \nabla E(\mathbf{w}^{(\tau)})$

- Gradient descent is mainly used in the minibatch version
 - Minibatch: a small (random) subset of the training samples
 - Minibatch size: e.g.128; important hyperparameter
 - In iteration τ , the sum in $E(\mathbf{w})$ is taken over all samples of the minibatch

Training Neural Networks: Initialisation

- **Preprocessing** of all training samples:
 - Subtract mean from feature values \rightarrow features with **zero mean**
 - Numerical reasons!
- Initialization of the weights $\mathbf{w}^{(0)}$:
 - small random numbers , e.g. Gaussians with zero mean
 - Xavier initialization [Glorot et al., 2010]:

 $\sigma = \frac{1}{\sqrt{N_i}}$ with N_i : number of input neurons of layer *i*

- Better option for ReLu [He et al., 2015]: $\sigma = \sqrt{\frac{2}{N_i}}$
- Initialisation is important, but may be tricky

Training Neural Networks: Gradient Descent

- Gradient descent with minibatches to minimize the error function $E(\mathbf{w}) = \frac{1}{2} \cdot \sum_{n,k} (y_{nk}(\mathbf{w}, \mathbf{x}_n) - L_n^k)^2$
- As long as the minimum of *E*(**w**) is not found:
 - Randomly choose a minibatch
 - Determine output y_{nk} of the neuronal network for each sample x_n of the current minibatch using the current values of w
 - New weights: w^(τ+1) = w^(τ) − η · ∇[Σ_n E_n(w^(τ))] with η … learning rate, τ… Iteration count
 - The sum to compute the gradient is taken over all samples of the minibatch.

Training Neural Networks: Gradients

- The components of the gradients are the derivatives
- Remember: in a neuron *j*, the signals coming from the input layer *a_i* are converted into an output *a_j*:

$$a_{j} = f(I_{j}) = f(\Sigma \ w_{jj} \cdot a_{j})$$
Chain rule:

$$\frac{\partial E_{n}}{\partial w_{jj}} = \frac{\partial E_{n}}{\partial I_{j}} \cdot \frac{\partial I_{j}}{\partial w_{jj}} \qquad a_{i} \quad w_{ij} \quad \delta_{j}$$

$$a_{i} \quad w_{ij} \quad \delta_{j} \quad \delta_{i}$$

$$a_{i} \quad w_{ij} \quad \delta_{j} \quad \delta_{i}$$

$$a_{i} \quad w_{ij} \quad \delta_{j} \quad \delta_{i}$$

$$a_{i} \quad w_{ij} \quad \delta_{j}$$

$$a_{i} \quad w_{ij} \quad w_{ij}$$

$$a_{i} \quad w_{ij} \quad \delta_{j}$$

$$a_{i} \quad w_{ij} \quad w_{ij}$$

$$a_{i} \quad w_{ij}$$

$$a_{i} \quad w_{ij} \quad w_{ij}$$

$$a_{i} \quad w_{ij}$$

$$a_{i} \quad w_{ij} \quad w_{i$$

 $\frac{\partial E_{n}(\mathbf{w})}{\partial W_{ii}}$

Training Neural Networks: Gradients

• $\delta_k \equiv \frac{\partial E_n}{\partial I_k}$ for neuron k in the output layer: $\delta_{\mathbf{k}} = [\mathbf{y}_{nk}(\mathbf{w}, \mathbf{x}_{n}) - \mathcal{L}_{n}^{k}] \cdot f'(I_{k})$ i.e. δ_k is proportional to the classification error • $\delta_j \equiv \frac{\partial E_n}{\partial E_n}$ for neuron *j* in a hidden layer: ∂I_i $\delta_{j} = \sum_{i} \frac{\partial E_{n}}{\partial I_{k}} \cdot \frac{\partial I_{k}}{\partial I_{i}} = f'(I_{j}) \cdot \sum_{k} W_{kj} \cdot \delta_{k}$ where k is an index running over all units to which neuron j sends an output

Training Neural Networks: Back-propagation

- Back-propagation for computing the gradients:
 - Forward step:
 - Calculate output y_{nk} from \mathbf{x}_n and the current values of \mathbf{w}
 - Save the output a_i as well as $f'(I_i)$ in every neuron j
 - The classification error and δ_k is calculated from y_{nk}
 - Actual back-propagation:
 - δ_j is calculated from δ_k and $f'(I_j)$ successively for each layer from δ_j and a_j :

$$\frac{\partial E_n}{\partial w_{ji}} = \delta_j \cdot a_j \qquad a_i \underbrace{w_{ij}}_{a_j} \delta_j \cdot \delta_j \\ \underbrace{\delta_j}_{\delta_j} \delta_j \cdot \delta_j \\ \underbrace{\delta_j}_{\delta_j} \delta_j \cdot \delta_j \\ \underbrace{\delta_j}_{\delta_j} \delta_j \cdot \delta_j \cdot \delta_j \\ \underbrace{\delta_j}_{\delta_j} \delta_j \cdot \delta_j \cdot \delta_j \cdot \delta_j \\ \underbrace{\delta_j}_{\delta_j} \delta_j \cdot \delta_j \cdot \delta_j \cdot \delta_j \cdot \delta_j \\ \underbrace{\delta_j}_{\delta_j} \delta_j \cdot \delta_j \cdot \delta_j \cdot \delta_j \cdot \delta_j \cdot \delta_j \\ \underbrace{\delta_j}_{\delta_j} \cdot \delta_j \\ \underbrace{\delta_j}_{\delta_j} \cdot \delta_j \cdot$$

Training Neural Networks: Regularisation

- Gradient descent might lead to overfitting
- Regularisation: weights should not take very large numerical values
- Expansion of the loss function:

$$E(\mathbf{w}) = \frac{1}{2} \cdot \sum_{n,k} \left(y_{nk} \left(\mathbf{w}, \mathbf{x}_n \right) - L_n^k \right)^2 + \lambda \cdot \sum_{i,j} w_{ij}^2$$

classification loss regularisation term

- This type of regularisation is called "weight decay" with parameter λ
- Also has to be considered in gradient computation

Training Neural Networks: Momentum

- Gradients from minibatches may be noisy
 - May result in slow convergence, may get stuck in local minima
- Solution: Use **momentum**!
 - Consider "velocity" v from average change in previous updates
 - Initialisation: $\mathbf{w}^{(0)}$ as discussed earlier, $\mathbf{v}^{(0)} = \mathbf{0}$
 - Update: $\mathbf{v}^{(\tau+1)} = \rho \cdot \mathbf{v}^{(\tau)} + \nabla E(\mathbf{w}^{(\tau)})$

$$\mathbf{W}^{(\tau+1)} = \mathbf{W}^{(\tau)} - \eta \cdot \mathbf{V}^{(\tau+1)}$$

- *Friction* parameter ρ : e.g. 0.9 or 0.99
- Faster convergence: Nesterov momentum [Suskever et al., 2013]

Training Neural Networks: Learning rate

- Learning rate η in gradient descent is an important hyperparameter
- Needs to be tuned carefully!
- Good η leads to ...
 - Fast convergence
 - Strong minimum of E
- Adapt η in the iteration process
- Example: exponential decay with small ε $\eta = \eta_0 \cdot (1 - \varepsilon)^{k \cdot \tau}$

Probabilities

- For multiclass-problems, for each class L^k there is a neuron y_k in the output layer
- The output of y_k is interpreted as the membership value of class L^k
- An interpretation as a posterior probability can be derived if the outputs are normalized

$$P(C = L^{k} | \mathbf{x}) = \frac{\mathbf{y}_{k}}{\sum_{k} \mathbf{y}_{k}}$$

Discussion

- Neural networks had gone out of fashion compared to procedures such as SVM or random forests:
 - Networks with few layers: not adaptable enough
 - Networks with many neurons: numerical problems in the determination of the parameters
- Neural networks have come back in the context of "Deep Learning"
 - Networks with many layers ("deep" networks), many neurons
 - Sharing of weights → Convolutional Neural Networks (CNN)
 - Improved initialisation and learning
 - Implementation on graphics card (GPU)
 - Availability of large databases of annotated images for training

