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Artifical Model of a Neuron: Motivation

* The human brain is very good at interpreting scenes

« The human brain consists of relatively simple nerve cells (neurons),
but these are strongly interconnected

« Assumption: The performance of the brain is related to this strong
connectedness

« Attempt to simulate these network structures in pattern recognition
-> neural networks

* Research on neural networks started in the 1940s
 Since the 1960s, they have gone in and out of fashion several times

 Currently: Convolutional Neural Networks (CNN), deep learning
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Artificial Model of a Neuron

Input variables x;: Components of the feature vector x

Each input variable is multiplied with a weight w;;
Determine weighted sum z; =2 w; - X, + b, =w;" - X + b,

b Bias, considered to be a component of each feature vector
>x =[x"1]"and w; = [w;" b]"

- Simplified notation : Input Neuron | Output
Z,=W,;' - X X1
X5
* Output a; of the neuron J: Xy

a; = f(z) =f(w;" - x) |
with f(z;) ... activation function X,
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The Perceptron: Binary Classification

example
* Binary classification, Class C = f(x), i.e. C € {-1, +1},

« Perceptron(can be interpreted as): a binary classifier based on a
single neuron

« Example (two features x,, X,):

Input (features) neuron Output

| <

« Output: Class label C = f(wT - x +w,) %1
— Use step function as activation function > C=(w'" - x + w,) >0
— The decision boundary is a (hyper-) plane
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The Perceptron

« Simplest possible neural network, consisting of one neuron

 Input: Vector ®(x)

— Derived by some (pre-defined) feature space mapping
— One component of ®(x) is equivalent to the bias (value 1)

- Activation function: f(a) =

« Output: a(x) = f(wT - ®(x))

(

\

+1ifa>0

-lifa<oO

- Wanted: Weights w of the perceptron

* One could try to determine w by minimizing the number of training
samples that are assigned to the wrong class

* Problem: the activation function is a step function
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Supervised Learning: Perceptron

« Causes due to the activation function problem: one cannot
compute gradients, and Gradient descent is impossible

« Better choice: apply the perceptron criterion according to
Rosenblatt (1962!)

* Perceptron criterion: Minimize the error function
E,(w) = T max(0, -[w™- ®(x,)] - C,)

* Note that for a sample that is classified correctly, the max() function
will return 0 and the sample will not contribute to the error

« The error [w'- ®(x,)] - C, is a linear function in regions where x, is
misclassified

—> the error function is piecewise linear
-2 gradient descent methods can be applied
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Supervised Learning: Perceptron

« Minimize the error function E (w) = -2 [wT- ®(x,)] - C,, using
stochastic gradient descent:
— Initialize the weights with random values: w©

— As long as the minimum of E_(w) is not found, loop through the
training data:

» Select a training sample x, with class C,

 Classify x,, using the current values of w = class C/,

» If C',,=C,: Determination of new weights:
wE) = wl — 1 - VE, (WO) =w® + 1 - &(x,) - C,
with n ... learning rate (can be set to 1 in this case)

« This procedure is guaranteed to converge (... but may be slow)
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Supervised Learning: Perceptron - Example

« Start: initial vector w(© (black), randomly selected training
sample x,, assigned to the wrong class (green circle).

* Red vector: error vector of the misclassified sample (7 =1), itis
added to w(© to obtain w® in iteration 1

C=red @

Random initialization lteration 1
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Supervised Learning: Perceptron - Example

« Centre: Red vector: error vector of another misclassified sample
(n=1), it is added to w®) to obtain w in iteration 2

lteration 1
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Geometrical Interpretation of the Perceptron

* Perceptron delivers a hyperplane as decision boundary

« Single layer perceptron only works if the classes are linearly
separable in feature space

« Example for 2D feature space mapping ®(x) = (d,(x), D,(x))"
linearly separable not linearly separable

(DZ(X) (Dz(x)
[ wr-®x)+b>0 t
® o T °
Wl @(x)+b=0 | o o e
\ .o
.wT-CIJ(x)+b<O °
{ ] .. ®
o
o o

‘ b/”W” > (I)l(x)
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Neural Networks: Multilayer Perceptron

« What if more complex decision boundaries are needed: Networks
consisting of several layers of neurons

« Example: two layers and “feed forward” - architecture

* Input: features x; Input  “hidden layers® Outputs

* Hidden layer with neurons z;.
z, = f(Z w; - x))

« Output: degree of membership to class Ck

Vi =f(Z W@ - z))

« Extension to more "hidden layers® - Multilayer Perceptron (MLP)

12
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Geometrical Interpretation of Multi-layered

Networks

« Hidden layers act as feature space Z4
mapping with adaptive functions @ X1 0

* Feature space mapping can be learnt X,
b(2)

« Example: ha

> Xl
Source: [Borgelt et al., 2003]
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Training Neural Networks: MLP

Given: N feature vectors x,, with a class membership vector C,
— 1-in-K representation: C,, = [C,}, ... C K]" and C ¥ € {0,1},
— C.k=1, if x, belongs to class Ck

Wanted: Weights w of the multi-layer network
Input  “hidden layers®  Qutputs

Activation function:
— Today, usually ReLu
— Output layer: softmax

Output layer delivers membership vy,
of the x,, for each class Ck:

ynk - f(W’ Xn)

What are the options for the activation functions
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Activation Functions

« Step function:
+1if a>0
f@=1 _.
Oif a<O .

* Logistic sigmoid function: 05 /
1
1+e? —

with f(a) = f(a) - [1 — (a)]

-50 -40 -30 -20 -10 00 10 20 30 40 50

. /
- Rectified Linear Unit (ReLu): . //
f(a)=max(0,a) : //

iﬁ Institute of Photogrammetry and Geolnformation



Training Neural Networks: Loss Function

- Membership v, of the feature vector x,, to class Lx: y,,, = f(w, X,)

 Definition of an loss (f:elrror) function for x,, , e.g.:
2
E,(w,x,)= 5.Z:(ynk (W,Xn)—Ll:])
k

« Example (3 classes; training sample belongs to class L?)

Input  hidden layer

Output Training label  Error

Y - Error?
Oy, =0.1 L1=0 0.1 0.005 |
Dy, =0.6 L2=1 0.4 0.080 Y
Dy,; =0.3 L3=0 0.3 0.045 _

E.(w, X,) 0.130

}
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Training Neural Networks: Minibatch Learning

 Total loss function: sum over all training samples:

E(w)=)E,(w,x,) :%-Z(ynk (w,x,)-L; )2 — min

n,k
Optimization: stochastic gradient descent [Bishop, 2006]

wt) = w — n - VE(W(T))

« Gradient descent is mainly used in the minibatch version
— Minibatch: a small (random) subset of the training samples
— Minibatch size: e.g.128; important hyperparameter

— In iteration t, the sum in E(w) is taken over all samples of the
minibatch
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Training Neural Networks: Initialisation

* Preprocessing of all training samples:
— Subtract mean from feature values - features with zero mean
— Numerical reasons!

« Initialization of the weights w(® :
— small random numbers , e.g. Gaussians with zero mean
— Xawvier initialization [Glorot et al., 2010]:
G:/\/Wi with N;: number of input neurons of layer i

— Better option for ReLu [He et al., 2015]: o = ,/%I
— Initialisation is important, but may be tricky
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Training Neural Networks: Gradient Descent

 Gradient descent with minibatches to minimize the error function

E(W) =23 (Y (Wix,) L)’

n,k
* As long as the minimum of E(w) is not found:

» Randomly choose a minibatch

» Determine output y,,, of the neuronal network for each sample
X, Of the current minibatch using the current values of w

» New weights: w*) =w® — - V[Z E (W) with 1 ...
learning rate, ... lteration count

» The sum to compute the gradient is taken over all samples of
the minibatch.

19
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Training Neural Networks: Gradients

0 E(w)
O W;
* Remember: in a neuron |, the signals coming from the input layer a,
are converted into an output a;:

a=fl)=f(Cw, - a) 5

. Chainrule: B, _ OB, Ay 4 <J -

« The components of the gradients are the derivatives

- ﬂ — 5 |-€. the signal arriving at neuron j from the neuron |
ow;

» B, = o;: Different for hidden layers and the output layer
ol

|

20

iﬁ Institute of Photogrammetry and Geolnformation



Training Neural Networks: Gradients

OE, .
* O = I for neuron k in the output layer:
Kk
8k - [ynk(W1 Xn) _Lnk] ] f’(lk)
l.e. o Is proportional to the classification error
* g = En for neuron j in a hidden layer:
2l
OE, Ol
§ = zk: o 3 = (1) - zk:ij Y
where k is an index running over all units to which neuron j sends an
output
Wy _» %
a Wi 9 |
a.
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Training Neural Networks: Back-propagation

« Back-propagation for computing the gradients:
— Forward step:
 Calculate output y,,, from x,, and the current values of w
* Save the output a, as well as f{(l;) in every neuron |
» The classification error and¢, is calculated from y,,
— Actual back-propagation:

* ¢ Is calculated from ¢, and f{(l) successively for
each layer from §and a;:

OE,
= 5 - a ai

]
OW;
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Training Neural Networks: Regularisation

Gradient descent might lead to overfitting

Regularisation: weights should not take very large numerical values

Expansion of the loss function:

1

E(W):E'Z(ynk(w’x Lk) +A- ZW
L™ ' l ' l

classification loss regularisation term

This type of regularisation is called “weight decay” with parameter A

Also has to be considered in gradient computation

23
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Training Neural Networks: Momentum

« Gradients from minibatches may be noisy
— May result in slow convergence, may get stuck in local minima

e Solution: Use momentum!
— Consider “velocity” v from average change in previous updates
— Initialisation: w(©® as discussed earlier, v©® =0
— Update: vt = 5. v0 + V E(wO)
Wt = W - n - v (ttl)
— Friction parameter p: e.g. 0.9 or 0.99

— Faster convergence: Nesterov momentum [Suskever et al.,
2013]
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Training Neural Networks: Learning rate

Good 7 leads to ...
— Fast convergence

— Strong minimum of E

* Adapt 77 in the iteration
process

« Example:
exponential decay with

small T
n=1-(1-¢)"

Needs to be tuned carefully!

E

good

Learning rate 7 in gradient descent is an important hyperparameter

© [Fei-Fei et al., 2017]

low learning rate

high learning rate

e

learning rate
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Probabilities

 For multiclass-problems, for each class L there is a neuron y, in the
output layer

« The output of y, is interpreted as the membership value of class LX

« An interpretation as a posterior probability can be derived if the
outputs are normalized

P(C=L|x)=

DY,

k
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Discussion

* Neural networks had gone out of fashion compared to procedures
such as SVM or random forests:

— Networks with few layers: not adaptable enough

— Networks with many neurons: numerical problems in the
determination of the parameters

* Neural networks have come back in the context of “Deep Learning®
— Networks with many layers (“deep" networks), many neurons
— Sharing of weights - Convolutional Neural Networks (CNN)
— Improved initialisation and learning
— Implementation on graphics card (GPU)
— Availability of large databases of annotated images for training

27
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