
Institute of Photogrammetry and GeoInformation

Non-probabilistic discriminative classifier

Neural Network Basic

Institute of Photogrammetry and GeoInformation

Content

• Artificial Model of a Neuron

• The Perceptron

• Neural Networks: Multilayer Perceptron

• Training Neural Networks

• Probabilities

• Discussion

2

Institute of Photogrammetry and GeoInformation

• The human brain is very good at interpreting scenes

• The human brain consists of relatively simple nerve cells (neurons),

but these are strongly interconnected

• Assumption: The performance of the brain is related to this strong

connectedness

• Attempt to simulate these network structures in pattern recognition

 neural networks

• Research on neural networks started in the 1940s

• Since the 1960s, they have gone in and out of fashion several times

• Currently: Convolutional Neural Networks (CNN), deep learning

Artifical Model of a Neuron: Motivation

3

Institute of Photogrammetry and GeoInformation

• Input variables xi: Components of the feature vector x

• Each input variable is multiplied with a weight wji;

Determine weighted sum zj = S wji · xi + bj = wj
T · x + bj

• bj: Bias, considered to be a component of each feature vector

x = [xT 1]T and wj = [wj
T bj]

T

Simplified notation :

zj = wj
T · x

• Output aj of the neuron j:

aj = f(zj) = f(wj
T · x)

with f(zj) … activation function

Artificial Model of a Neuron

.

.

.

x1

x2

x3

xn bj

S f

wj1

wjn

wj3

wj2

aj

Input Neuron j Output

wjb

4

Institute of Photogrammetry and GeoInformation

• Binary classification, Class C = f(x), i.e. C  {-1, +1},

• Perceptron(can be interpreted as): a binary classifier based on a

single neuron

• Example (two features x1, x2):

• Output: Class label C = f(wT · x + wb)

– Use step function as activation function  C = (wT · x + wb) > 0

– The decision boundary is a (hyper-) plane

The Perceptron: Binary Classification

example

5

eL1

L2

w

wb / ||w||
x1

x2

x1

x2

bj

S f

w1

w2

C

Input (features) neuron Output

wb

Institute of Photogrammetry and GeoInformation

• Simplest possible neural network, consisting of one neuron

• Input: Vector F(x)

– Derived by some (pre-defined) feature space mapping

– One component of F(x) is equivalent to the bias (value 1)

• Activation function: f(a) =

• Output: a(x) = f(wT · F(x))

• Wanted: Weights w of the perceptron

• One could try to determine w by minimizing the number of training

samples that are assigned to the wrong class

• Problem: the activation function is a step function

The Perceptron

+1 if a  0

-1 if a < 0

6

Institute of Photogrammetry and GeoInformation

Supervised Learning: Perceptron

• Causes due to the activation function problem: one cannot

compute gradients, and Gradient descent is impossible

• Better choice: apply the perceptron criterion according to

Rosenblatt (1962!)

• Perceptron criterion: Minimize the error function

Ep(w) = S max(0, -[wT· F(xn)] · Cn)

• Note that for a sample that is classified correctly, the max() function

will return 0 and the sample will not contribute to the error

• The error [wT· F(xn)] · Cn is a linear function in regions where xn is

misclassified

 the error function is piecewise linear

 gradient descent methods can be applied

7

Institute of Photogrammetry and GeoInformation

Supervised Learning: Perceptron

• Minimize the error function En(w) = -S [wT· F(xn)] · Cn using

stochastic gradient descent:

– Initialize the weights with random values: w(0)

– As long as the minimum of En(w) is not found, loop through the

training data:

• Select a training sample xn with class Cn

• Classify xn using the current values of w  class C‘n

• If C‘n Cn: Determination of new weights:

w(t+1) = w(t) – h · En(w
(t)) = w(t) + h · F(xn) · Cn

with h … learning rate (can be set to 1 in this case)

• This procedure is guaranteed to converge (… but may be slow)

8

Institute of Photogrammetry and GeoInformation
9

w(0)

misclassified sample

Random initialization

Supervised Learning: Perceptron - Example
• Start: initial vector w(0) (black), randomly selected training

sample xn assigned to the wrong class (green circle).

• Red vector: error vector of the misclassified sample (h =1), it is

added to w(0) to obtain w(1) in iteration 1

C = red

C = blue

Iteration 1

w(1)

x1

x2

C = red

C = blue

x1

x2

Institute of Photogrammetry and GeoInformation
10

C = red

C = blue

Iteration 2

w(2)

x1

x2

misclassified sample

Iteration 1

Supervised Learning: Perceptron - Example

• Centre: Red vector: error vector of another misclassified sample

(h =1), it is added to w(1) to obtain w(2) in iteration 2

x1

x2

C = red
C = blue

w(1)

Institute of Photogrammetry and GeoInformation

• Perceptron delivers a hyperplane as decision boundary

• Single layer perceptron only works if the classes are linearly

separable in feature space

• Example for 2D feature space mapping F(x) = (F1(x), F2(x))T

linearly separable not linearly separable

Geometrical Interpretation of the Perceptron

wT · F(x)+ b = 0

F1(x)

F2(x)

F1(x)

F2(x)

w

b / ||w||

wT · F(x) + b < 0

wT · F(x) + b > 0

11

Institute of Photogrammetry and GeoInformation

Neural Networks: Multilayer Perceptron

• What if more complex decision boundaries are needed: Networks

consisting of several layers of neurons

• Example: two layers and “feed forward“ - architecture

• Input: features xi

• Hidden layer with neurons zj:

zj = f(S wji
(1) · xi)

• Output: degree of membership to class Ck

yk =f(S wki
(2) · zi)

• Extension to more "hidden layers“  Multilayer Perceptron (MLP)

.

.

.

x
1

xD

b(1)

w11
(1)

Input Outputs

.

.

.

z
1

zM

b(2)

.

.

.

y
1

w11
(2)

yK

“hidden layers“

12

Institute of Photogrammetry and GeoInformation

Geometrical Interpretation of Multi-layered

Networks
• Hidden layers act as feature space

mapping with adaptive functions F

• Feature space mapping can be learnt

• Example:

Source: [Borgelt et al., 2003]

x1

x2

b(1)

z1

z2

b(2)

y

x1

x2

a

c

b

d

z1 = 0

z1 = 1

z2 = 1

z2 = 0

z1

z2

a, c

b

d
y = 1

y = 0

13

Institute of Photogrammetry and GeoInformation

Training Neural Networks: MLP

• Given: N feature vectors xn with a class membership vector Cn

 1-in-K representation: Cn = [Cn
1, … Cn

K]T and Cn
k  {0,1},

 Cn
k = 1, if xn belongs to class Ck

• Wanted: Weights w of the multi-layer network

• Activation function:

 Today, usually ReLu

 Output layer: softmax

• Output layer delivers membership ynk

of the xn for each class Ck:

ynk = f(w, xn)

• What are the options for the activation functions

14

.

.

.

x1

xD

b(1)

w11
(1)

Input Outputs

.

.

.

z1

zM

b(2)

.

.

.

y1

w11
(2)

yK

“hidden layers“

Institute of Photogrammetry and GeoInformation

Activation Functions

• Step function:

• Logistic sigmoid function:

• Rectified Linear Unit (ReLu):

+1 if a  0

0 if a < 0
f(a) =

f(a) = s(a) =

with f‘(a) = f(a) · [1 – f(a)]

1

1 + e-a
0

0,5

1

-5,0 -4,0 -3,0 -2,0 -1,0 0,0 1,0 2,0 3,0 4,0 5,0

15

   max 0,f a a
0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

Institute of Photogrammetry and GeoInformation

Training Neural Networks: Loss Function

• Membership ynk of the feature vector xn to class Lk: ynk = f(w, xn)

• Definition of an loss (error) function for xn , e.g.:

• Example (3 classes; training sample belongs to class L2)

16

.

.

.

xn1

xnD

b(1)

w11
(1)

Input Output Training label Error ½ · Error2

.

.

.

z1

zM

b(2)

yn1 = 0.1 Ln
1 = 0 0.1 0.005

w11
(2)

yn3 = 0.3 Ln
3 = 0 0.3 0.045

hidden layer

yn2 = 0.6 Ln
2 = 1 -0.4 0.080

En(w, xn) 0.130

S

      
2

,
1

,
2

k

n n nk n n

k

E y Lw x w x

Institute of Photogrammetry and GeoInformation

Training Neural Networks: Minibatch Learning

• Total loss function: sum over all training samples:

Optimization: stochastic gradient descent [Bishop, 2006]

w(t+1) = w(t) – h · E(w(t))

• Gradient descent is mainly used in the minibatch version

 Minibatch: a small (random) subset of the training samples

 Minibatch size: e.g.128; important hyperparameter

 In iteration t, the sum in E(w) is taken over all samples of the

minibatch

17

           
2

,

1
, , min

2

k

n n nk n n

n n k

E E y Lw w x w x

Institute of Photogrammetry and GeoInformation

Training Neural Networks: Initialisation

• Preprocessing of all training samples:

 Subtract mean from feature values  features with zero mean

 Numerical reasons!

• Initialization of the weights w(0) :

 small random numbers , e.g. Gaussians with zero mean

 Xavier initialization [Glorot et al., 2010]:

with Ni: number of input neurons of layer i

 Better option for ReLu [He et al., 2015]:

 Initialisation is important, but may be tricky

18

s  1

i
N

s  2
iN

Institute of Photogrammetry and GeoInformation

Training Neural Networks: Gradient Descent

• Gradient descent with minibatches to minimize the error function

• As long as the minimum of E(w) is not found:

 Randomly choose a minibatch

 Determine output ynk of the neuronal network for each sample

xn of the current minibatch using the current values of w

 New weights: w(t+1) = w(t) – h · [Sn En(w
(t))] with h …

learning rate, t… Iteration count

 The sum to compute the gradient is taken over all samples of

the minibatch.

19

      
2

,

1
,

2

k

nk n n

n k

E y Lw w x

Institute of Photogrammetry and GeoInformation

Training Neural Networks: Gradients

• The components of the gradients are the derivatives

• Remember: in a neuron j, the signals coming from the input layer ai

are converted into an output aj:

aj = f(Ij) = f (S wji · ai)

• Chain rule:

 i.e. the signal arriving at neuron j from the neuron i

  dj: Different for hidden layers and the output layer

.

.

.
ai

aj

wji

dkwkj

d1

dj

 En(w)

wji

En

wji

= ·
En

 Ij

 Ij

wji

En

 Ij

 Ij

wji

= ai

20

Institute of Photogrammetry and GeoInformation

Training Neural Networks: Gradients

• dk  for neuron k in the output layer:

dk = [ynk(w, xn) –Ln
k] · f’(Ik)

i.e. dk is proportional to the classification error

• dj  for neuron j in a hidden layer:

where k is an index running over all units to which neuron j sends an

output

.

.

.
ai

aj

wji

dkwkj

d1

dj

En

 Ik

En

 Ij

dj = · = f’(Ij) · wkj · dk

En

 Ik

 Ik

 lj
S

k
S
k

21

Institute of Photogrammetry and GeoInformation

Training Neural Networks: Back-propagation

• Back-propagation for computing the gradients:

– Forward step:

• Calculate output ynk from xn and the current values of w

• Save the output aj as well as f‘(Ij) in every neuron j

• The classification error anddk is calculated from ynk

– Actual back-propagation:

• dj is calculated from dk and f‘(lj) successively for

each layer from dj and aj:

.

.

.
ai

aj

wji

dkwkj

d1

dj
En

wji

= dj · aj

22

Institute of Photogrammetry and GeoInformation

Training Neural Networks: Regularisation

• Gradient descent might lead to overfitting

• Regularisation: weights should not take very large numerical values

• Expansion of the loss function:

classification loss regularisation term

• This type of regularisation is called “weight decay“ with parameter l

• Also has to be considered in gradient computation

23

     l   +  
2 2

, ,

1
,

2

k

nk n n ij

n k i j

E y L ww w x

Institute of Photogrammetry and GeoInformation

Training Neural Networks: Momentum

• Gradients from minibatches may be noisy

 May result in slow convergence, may get stuck in local minima

• Solution: Use momentum!

 Consider “velocity“ v from average change in previous updates

 Initialisation: w(0) as discussed earlier, v(0) = 0

 Update: v(t+1) = r · v(t) + E(w(t))

w(t+1) = w(t) - h · v(t+1)

 Friction parameter r : e.g. 0.9 or 0.99

 Faster convergence: Nesterov momentum [Suskever et al.,

2013]

24

Institute of Photogrammetry and GeoInformation

Training Neural Networks: Learning rate

• Learning rate h in gradient descent is an important hyperparameter

• Needs to be tuned carefully!

• Good h leads to …

 Fast convergence

 Strong minimum of E

• Adapt hin the iteration

process

• Example:

exponential decay with

small e

25

E

t

very high learning rate

low learning rate

high learning rate

good learning rate
 

t
h h e


  0 1

k

© [Fei-Fei et al., 2017]

Institute of Photogrammetry and GeoInformation

Probabilities

• For multiclass-problems, for each class Lk there is a neuron yk in the

output layer

• The output of yk is interpreted as the membership value of class Lk

• An interpretation as a posterior probability can be derived if the

outputs are normalized

  


|
k k

k

k

y
P C L

y
x

26

Institute of Photogrammetry and GeoInformation

Discussion

• Neural networks had gone out of fashion compared to procedures

such as SVM or random forests:

– Networks with few layers: not adaptable enough

– Networks with many neurons: numerical problems in the

determination of the parameters

• Neural networks have come back in the context of “Deep Learning“

– Networks with many layers (“deep" networks), many neurons

– Sharing of weights  Convolutional Neural Networks (CNN)

– Improved initialisation and learning

– Implementation on graphics card (GPU)

– Availability of large databases of annotated images for training

27

