Convolutional Neural Network

Non-probabilistic discriminative classifier

content

- Introduction to Convolutional Neural Network
- Convolutional Neural Network
 - Convolutional layer
 - Nonlinearities
 - Pooling layers
 - Batch normalization
- CNN training
- CNN pixel-wise classification
- Fully Convolutional Networks
- CNN retraining
- CNN examples
- Discussion

Deep Learning

- Neural networks had gone out of fashion compared to procedures such as SVM or random forests:
 - Networks with few layers: not adaptable enough
 - Networks with many neurons: numerical problems in the determination of the parameters
- Neural networks have come back in the context of "Deep Learning" ("Google Brain" project)
 - Networks with many layers ("deep" networks), many neurons
 - Deep networks come in different flavours; here: Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) I

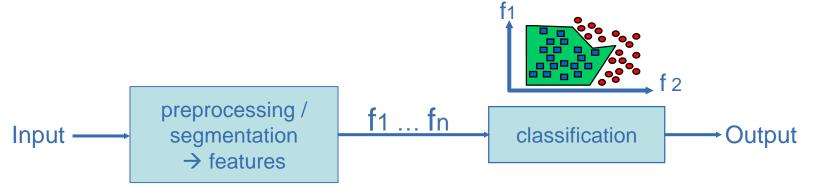
- CNN [LeCun et al., 1998; Krizhevsky et al., 2012]:
 - Layers maintain the topology of the image grid
 - Weights are interpreted as coefficients of linear filter matrices which, thus, can be learned
 - In every layer, there is a combination of
 - 1) Convolution (related to the weights of the NN)
 - 2) Non-linearity (activation function)
 - 3) Pooling: selection of the filter response in a local neighbourhood, reduction of resolution
 - 4) Normalization (sometimes omitted)

Convolutional Neural Networks (CNN) II

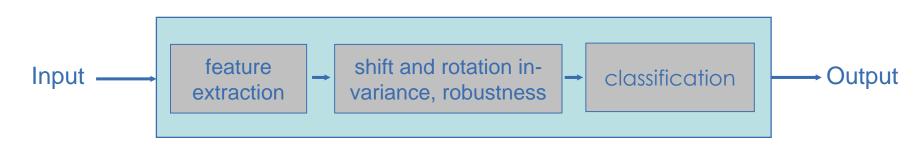
- CNN [LeCun et al., 1998; Krizhevsky et al., 2012]:
 - The structure consisting of convolution, non-linearity, pooling and normalization are repeated multiple times → intermediate layers of the network
 - This is typically followed by one or more fully connected layer(s)
 - The result of the last layer provides a high-level representation of a certain part of the image (i.e., a feature vector)
 - This feature vector is presented to a simple linear classifier
 - Interpretation: "Learning of appropriate features"

Convolutional Neural Networks: Concept

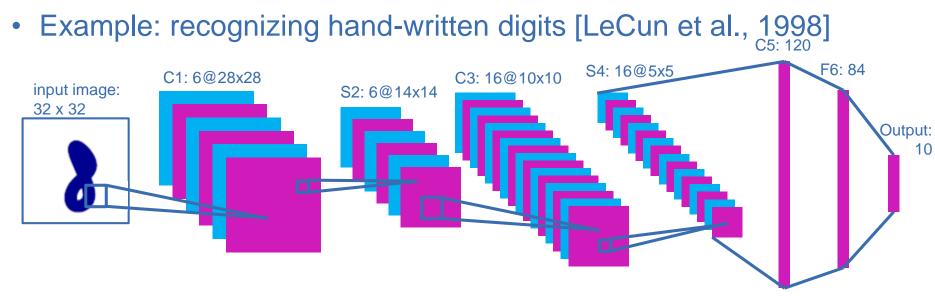
• Classical approach in classification:



CNN: Definition of features and classification are integrated



CNN Architecture Example



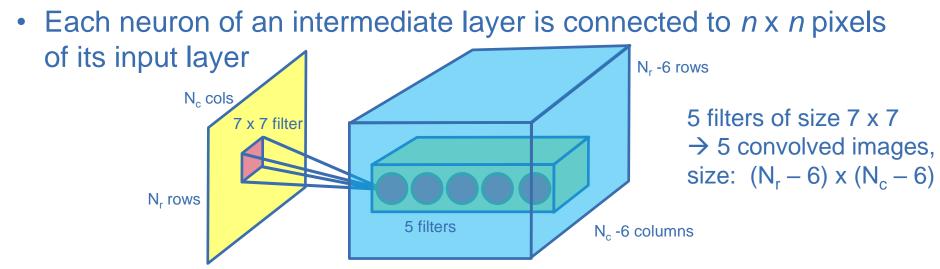
- C1,C3,C5: Convolutional Layer with 5×5 convolution kernels
- S2, S4: Pooling Layer \rightarrow Subsampling by factor 4
- F6: Fully Connected Layer (with C5 and output) \rightarrow 3-MPL
- About 187,000 connections, but only about 14000 must be learnt

 Sharing of weights in the convolutional layers

Convolutional Neural Networks: Interpretation

- Input layer: each pixel of an image patch corresponds to a neuron
- Intermediate layers: correspond to extracted features at different levels of abstraction
 - Low-level features
 - Intermediate-level features
 - High-level features: input for the final classifier
- Output layer:
 - One neuron per class
 - Output of each neuron corresponds to the class score
 - Softmax layer: results of output layer are passed through a softmax function

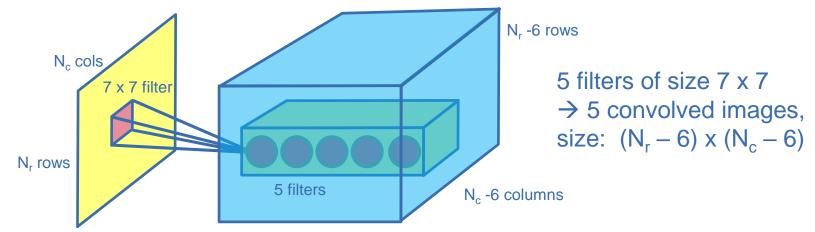
Convolutional Layers I



- The neurons are arranged in a spatial grid that preserves the structure of the image grid
- Neighbouring neurons in the intermediates layer share weights
 - → The weights of the connections can be interpreted as the the elements of an $n \ge n$ convolutional filter
- The weigths are the parameters to be learned!

Convolutional Layers II

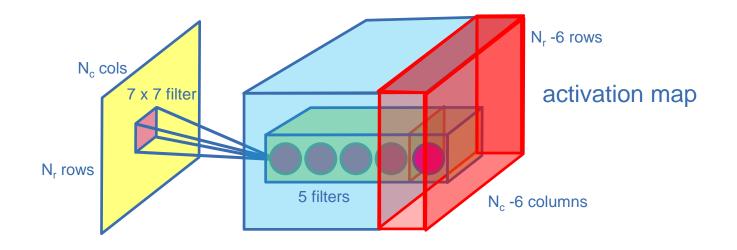
- Each intermediate layer may consist of multiple grids having the same spatial arrangement
 - Multiple convolutions per layer
 - Can be interpreted as a filter bank whose filters are learned



Convolutions can be computed very fast on a GPU

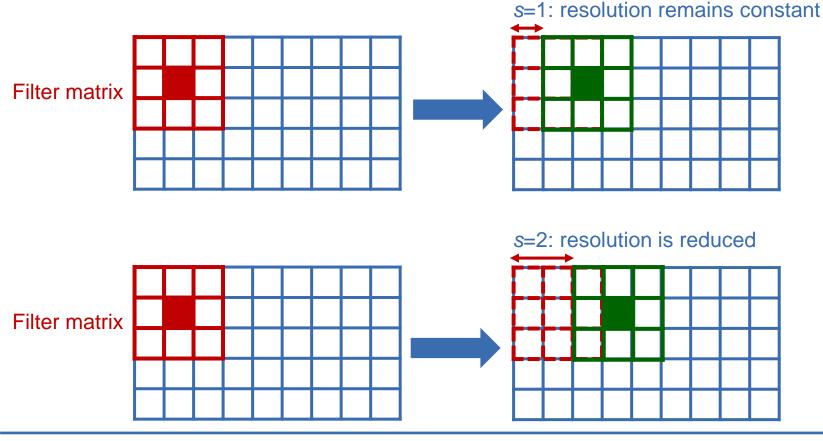
Convolutional Layers III

- Each convolution results in an activation map (a slice through the block of neurons per layer)
- Activation maps preserve spatial structure!



Convolutional Layers: Stride

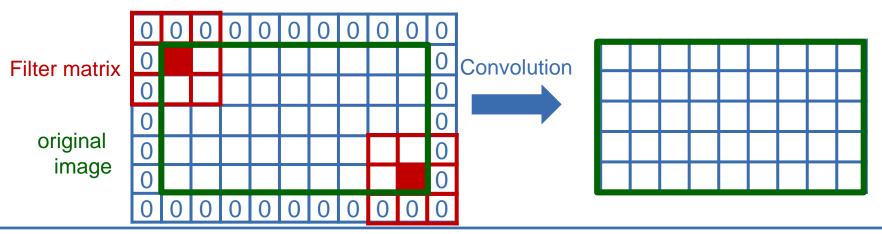
- Sometimes, the resolution is reduced in a convolutional layer
- Stride s: distance between neighbouring positions of the filter matrix



Convolutional Layers: Zero Padding

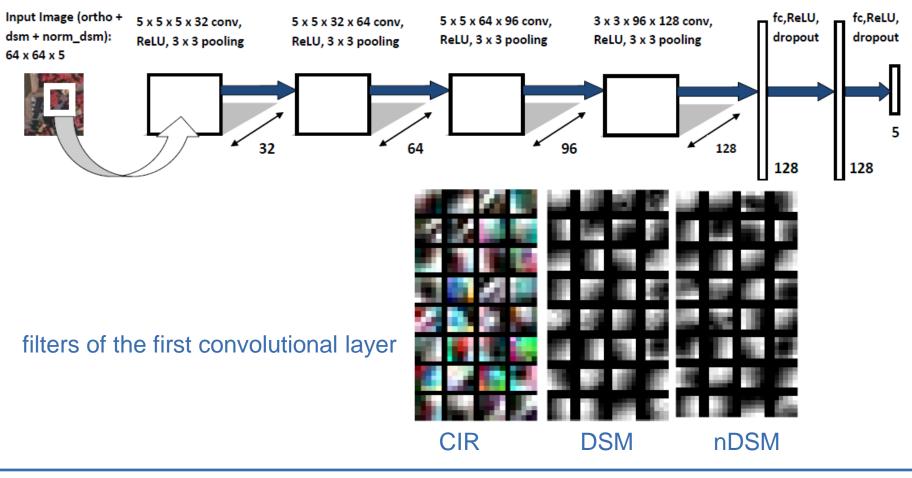
- What happens at the image boundaries?
 - Reduce image size
 Filter matrix

– Zero padding: add rows / columns of zeroes \rightarrow maintain size



Convolutional Layer: Example

• Classification of aerial imagery [Paisitkriangkrai et al., 2016]:

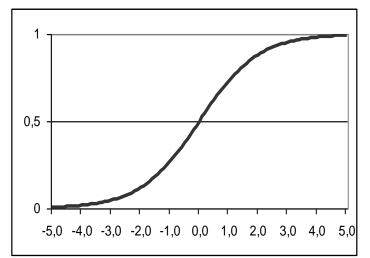


Nonlinearities I

- The nonlinearity f corresponds to the activation funciton of NN
- Each filter output of a convolutional layer is passed through f
- Logistic Sigmoid function:

$$f(a) = \frac{1}{1 + e^{-a}}$$

- Gradients all tend to zero for large / small inputs
- > All outputs are larger than zero!
- Slow convergence in training!



Nonlinearities II

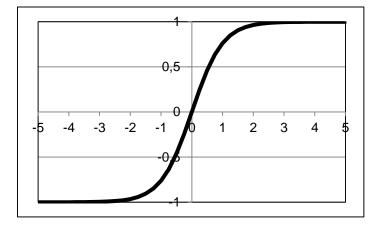
• Tangens Hyperbolicus:

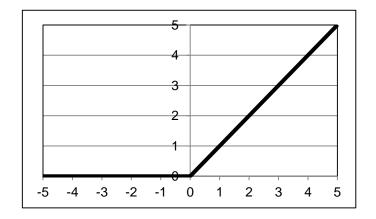
$$f(a) = \frac{e^a - e^{-a}}{e^a + e^{-a}}$$

- Output is centered at 0
- Gradients still tend to zero for large / small inputs
- Slow convergence in training!
- Rectified linear unit (ReLu):

 $f(a) = \max(0, a)$

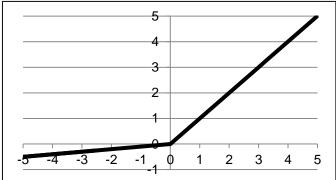
- Gradients don't saturate for a < 0</p>
- Much faster convergence





Nonlinearities III

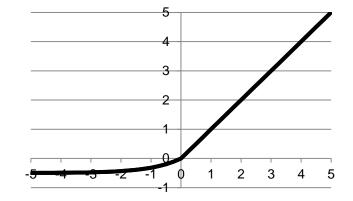
- Leaky ReLu:
 - $f(a) = \max(0.01 \cdot a, a)$
 - ➢ Gradients are not 0 for a < 0!</p>



- Parametric ReLu [He et al., 2015]: learn factor for a < 0</p>
- Exponential linear units (ELu):

$$f(a) = \begin{cases} a & \text{if } a > 0 \\ \alpha \cdot (e^a - 1) & \text{if } a \le 0 \end{cases}$$

- Slightly more robust to noise
- Gradients do saturate for small a
- Fast convergence



Pooling Layers

- Reduce data volume by increasing the scale of the feature maps
- Combine k x k pixels by selecting one representative value
 - Average \rightarrow average pooling
 - Take local maximum of the filter responses \rightarrow max pooling
- Pooling increases the robustness against local shifts and noise



Batch Normalization

- Batch normalisation:
 - Usually carried out between convolutional layer and nonlinearity
 - Training: normalize neuron outputs *z* using their means μ_z and standard deviations σ_z (computed over the minibatch):

$$Z_{norm} = \frac{Z - \mu_z}{\sigma}$$

- Classification: use overall r^{o} means and standard deviations!

CNN: Training

- Stochastic minibatch gradient descent with momentum
 - Additionally scale gradients based on their variance
 - → Adam [Kingma & Ba, 2015]
- Data augmentation [Wu et al., 2015a]:
 - Automatically generate additional training samples
 - Geometrical transformations (random shifts, rotations, scales, shears; flips)
 - Radiometric transformations (change colours, ...)
 - Acts as a kind of regularization

© [Wu et al., 2015a]

• Square sum of classification errors (cf. lecture Neural Networks):

$$E(\mathbf{w}) = \sum_{n} E_{n}(\mathbf{w}, \mathbf{x}_{n}) = \frac{1}{2} \cdot \sum_{n,k} (y_{nk}(\mathbf{w}, \mathbf{x}_{n}) - L_{n}^{k})^{2} \rightarrow \min$$

• Softmax (cross-entropy) loss: use output y_{nk} of last layer as argument of the softmax function

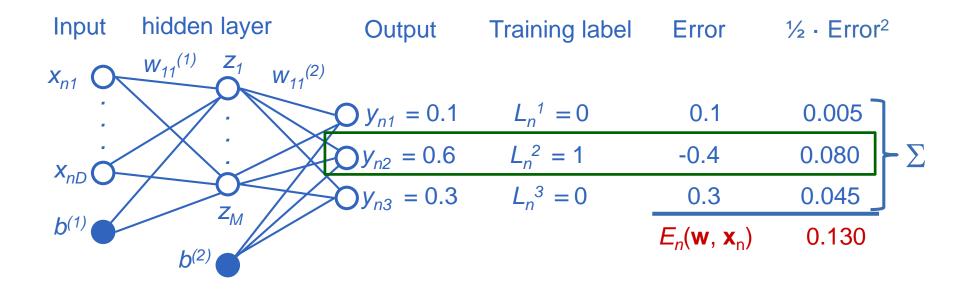
$$E(\mathbf{w}) = \sum_{n} -\log \left[\frac{e^{y_{nr}(\mathbf{w}, \mathbf{x}_{n})}}{\sum_{k} e^{y_{nk}(\mathbf{w}, \mathbf{x}_{n})}} \right] \rightarrow \min$$

> y_{nr} : output for the class label L_n^r of the training sample

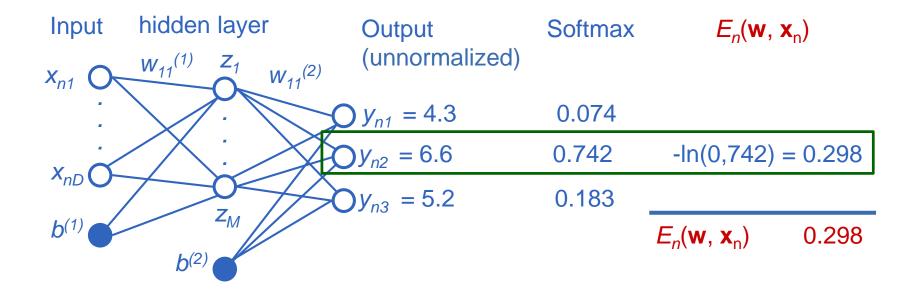
• Hinge loss:

$$E(\mathbf{w}) = \sum_{n} \left(\sum_{k \neq r} \max(0, y_{nk}(\mathbf{w}, \mathbf{x}_n) - y_{nr}(\mathbf{w}, \mathbf{x}_n) + 1) \right) \rightarrow \min$$

• Example square sum of classification errors (3 classes; training sample belongs to class L^2)

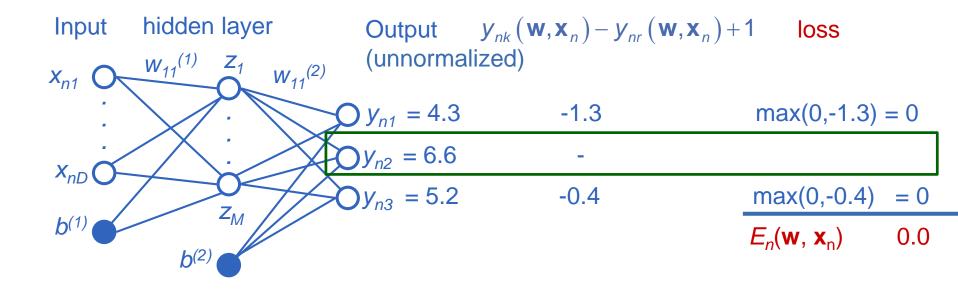


• Example softmax loss (3 classes; training sample belongs to class $L^2 \rightarrow y_{nr} = y_{n2}$)



• Tries to push softmax(y_{n2}) \rightarrow 1 (thus, $E_n \rightarrow 0$)

• Example hinge loss (3 classes; training sample belongs to class L^2 $\rightarrow y_{nr} = y_{n2}$)



Here, the loss is 0 because the maximum output corresponds to the correct class

CNN Training: Regularisation

• Weight decay: add square sum of weights to data loss

$$E_{total}(\mathbf{w}) = E(\mathbf{w}) + \lambda \cdot \sum_{i,j} W_{ij}^2$$

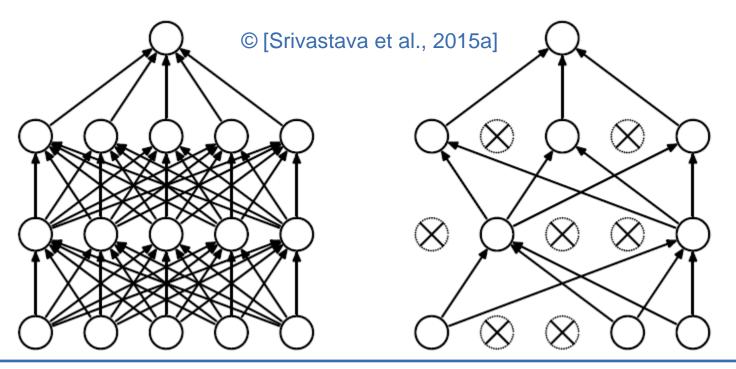
- Data loss E(w): one of the loss functions just discussed
- Alternative: use L1-norm of weights

$$E_{total}(\mathbf{w}) = E(\mathbf{w}) + \lambda \cdot \sum_{i=1}^{n} |W_{ij}|$$

• Regularisation is important to avoid overfitting

CNN Training: Dropout

- In training: randomly drop r % of the connections (e.g. r = 50%)
 - Gradient computation: set the weights to zero in forward pass
 - Drop different connections in different iterations

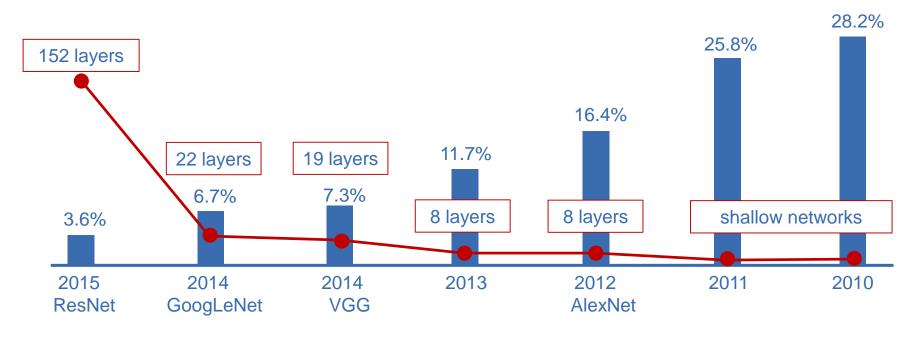


CNN Training: Dropout

- Dropout forces the network to have a redundant representation: if a neuron is dropped, it does not matter too much
- In fact, one trains a large ensemble of models (different patterns of dropped neurons) → avoid overfitting!
- Due to dropout, the output becomes random
- At test time, all neurons are used → one has to "average out randomness"
 - The weighted sum has to be multiplied by the probability r of dropping a neuron
 - We scale the activations so that for each neuron, the output at test time is identical to the expected output at training time

CNN and Depth

- The depth of CNN has increased considerably over time
- ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (adapted from [Fei Fei et al., 2017]): number of layers vs. top-5 errors



CNN - Pixelwise Classification

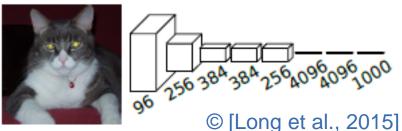
- So far, the input consisted of an entire image of a given size
- Only one class label was predicted for each image

Las	\rightarrow human face	0.01
	\rightarrow frog	0.98
	\rightarrow bird	0.01

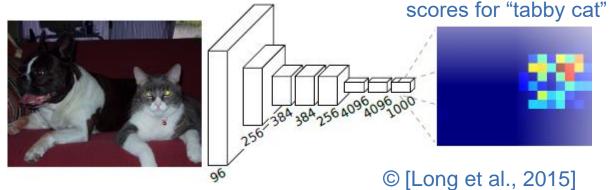
- Pixel-wise classification of images of arbitrary size:
 - Sliding window approach :
 - Shift the input domain over the image
 - \succ Predict class of the central pixel at each position \rightarrow slow

CNN - Pixelwise Classification: FCN I

- Better solution: Fully convolutional networks (FCN) with downsampling and upsampling inside the network [Long et al., 2015]
- Standard CNN: predict class for one image patch
- Fully convolutional networks:



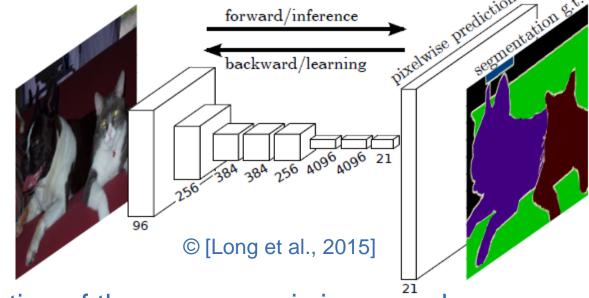
- Perform each convolution over the entire image
- Result: down-sampled score for for each class
- Needs to be upsampled



30

Fully Convolutional Networks: Upsampling I

• Upsampling fully convolutional networks [Long et al., 2015]:



- The resolution of the score map is increased
- Training:
 - Backpropagation
 - Loss funciton: sum of loss function over entire image

Fully Convolutional Networks: Upsampling II

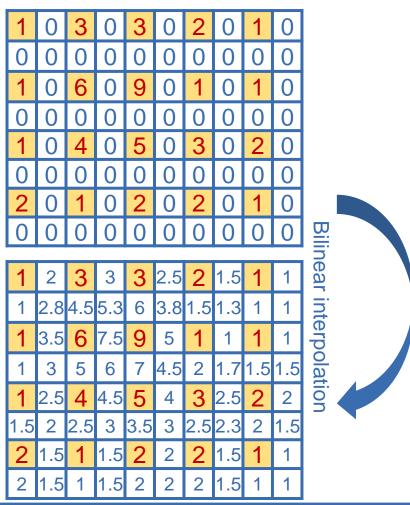
• Simplest method: bilinear interpolation

1	3	3	2	1
1	6	9	1	1
1	4	5	3	2
2	1	2	2	1

Upsample by factor f (here f = 2)

Set intermediate output pixels to 0

 Problem: poor representation of object boundaries



32

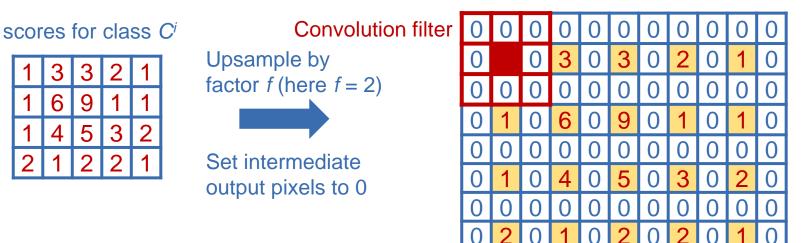
Leibniz

Universität

Hannover

Fully Convolutional Networks: Upsampling III

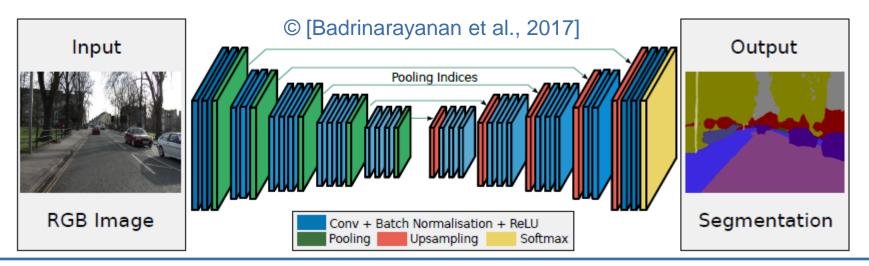
• Better: backwards strided convolution ("transpose convolution")



- Learn convolution filter
 [000000000000000
 to determine class labels at intermediate pixels at full resolution
- The actual computation is not based on a convolution with many unnecessary multiplications with elements whose values are zero
- Sometimes called "deconvolution" \rightarrow should be avoided

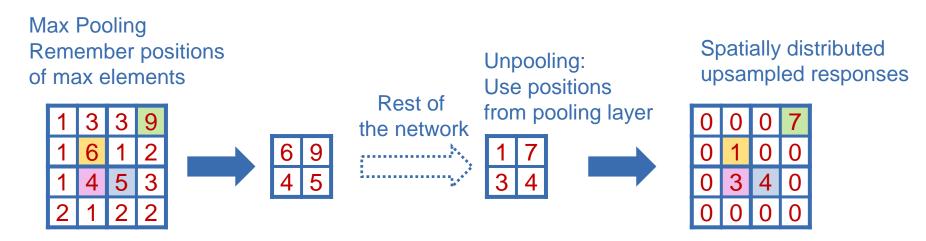
Fully Convolutional Networks: Unpooling I

- Segnet [Badrinarayanan et al., 2017]: use several convolutional layers for upsampling
- Better preservation of class boundaries: Unpooling layers
 - In each pooling layer: remember which element was max.
 - Use these indices for distributing responses in unpooling
 - Here: downsampling structure from VGG16



Fully Convolutional Networks: Unpooling II

• Max Unpooling [Badrinarayanan et al., 2017]



- After upsampling layer: convolutional layer to fill intermediate positions
- There are always corresponding pairs of pooling and unpooling layers

CNN: Retraining I

- Training a CNN requires a I o t of training samples (e.g. ImageNet: 1.2 million training images)
- Training may take several days or even weeks
- Retraining: use existing CNN with the trained weights and adapt it to a new problem with a smaller number of training samples
 Transfer Learning
 - Freeze lower layers (contain more generic information)
 - Retrain upper layers (more specific), e.g.
 - > Just the last FC layer \rightarrow Class prediction
 - Several FC layers, upper convolutional layers
 - With CNN, retraining is the norm

CNN: Retraining II

- The success of retraining depends on
 - The similarity of the problems to be solved
 - The amount of training data that are available
- There may be interdependencies between layers → freezing intermediate layers may lead to a deterioration of results even for similar tasks [Yosinski et al., 2014]
- Retraining seems to increase the accuracy of classifiction: the network "remembers" the training samples seen in the past
- If tasks are very different, freezing layers is not a good idea

CNN: Retraining III

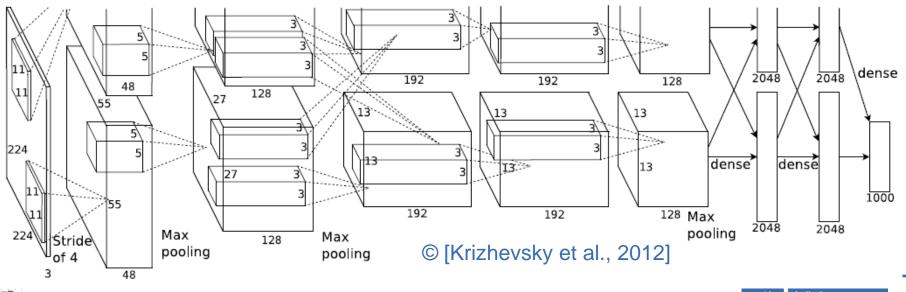
- Retraining recommendations [Fei-Fei et al., 2017]:
 - Similar problem, few training samples → retrain linear classifier on top layer
 - Similar problem, lots of training samples \rightarrow finetune a few layers
 - Different problem, lots of training smaples → finetune a larger number of layers
 - Different problem, few training samples: problematic!
- Note that existing networks can even be applied to initialise CNN for different types of input, e.g. a CNN trained using RGB imagery can be used to initialize a CNN for height data!
- The numbers of bands have to match \rightarrow make 3 bands from DSM!

CNN example: CNN and Point Clouds

- Problem: Convolutions need raster data
- Topographic Applications: 2.5D raster DSM
 → standard CNN, e.g. [Paisitkriangkrai et al., 2016]
- 3D voxel space [Hackel et al., 2017]
 - VoxNet [Maturana & Scherer, 2015]
 - ShapeNet [Wu et al., 2015b]
- Immediate applications to unstructured point clouds:
 - PointNet [Qi et al., 2017]: not really CNN
- In general not as much research as for images

CNN Example: AlexNet

- Goal: Classification of entire images (size 224 x 224)
 → predict one class label per image
 - ImageNet Large-Scale Visual Recognition Challenge (ILSVRC):
 1.2 million training images, 1000 classes
 - 5 convolutional layers, two FC layers,
 - With AlexNet, CNN really took off (15.3% top 5 error)



Institute of Photogrammetry and GeoInformation

CNN Example: VGGNet

- VGGNet [Simonyan & Zisserman, 2015] (Visual Geometry Group, Oxford)
 - Deeper networks
 - here: VGG16
 - Slightly more layers: VGG19
 - 138 Million parameters!
 - Top 5 error in ILSVRC (VGG19):
 7.3%

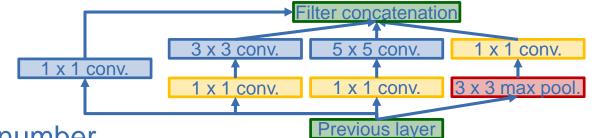
Softmax			
FC 1000			
FC 4096			
FC 4096			
Pool			
3 x 3 conv, 512			
3 x 3 conv, 512	Softmax		
3 x 3 conv, 512	FC 1000		
Pool	FC 4096		
3 x 3 conv, 512	FC 4096		
3 x 3 conv, 512	Pool		
3 x 3 conv, 512	3 x 3 conv, 256		
Pool	3 x 3 conv, 384		
3 x 3 conv, 128	Pool		
3 x 3 conv, 128	3 x 3 conv, 384		
Pool	Pool		
3 x 3 conv, 64	5 x 5 conv, 256		
3 x 3 conv, 64	11 x 11 conv, 96		
input	input		
VGG16	AlexNet		

41

l Leibniz 2 Universität 4 Hannover

CNN Example: GoogLeNet

- GoogLeNet [Szegedy et al., 2015]: 22 Layers, no FC
 - Basic building block: Inception modules



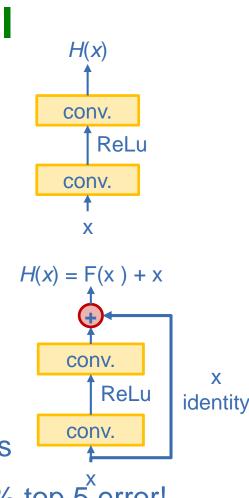
- Reduction of the number
 of parameters by factor 12 compared to AlexNet
- 1x1 convolutions: "bottleneck layers" (reduce number of filters)
- Errors similar to VGGNet, fewer parameters

CNN Example: ResNet I

- ResNet [He et al., 2015]
 - Can we still go deeper with CNN?
 - Experiments show: if we go deeper with CNN, the errors saturate and later become even larger
 - However, deeper networks lead to an increase of both, training and test errors → no overfitting, but optimization problem!
 - Experiment of thought: use shallow CNN and identity mappings
 → The results should not be worse than the shallow network
 - Obviously, learning such an identity mapping is difficult, because the additional layers degrade the accuracy if their parameters are learned
 - Solution: use residual mapping

CNN Example: ResNet II

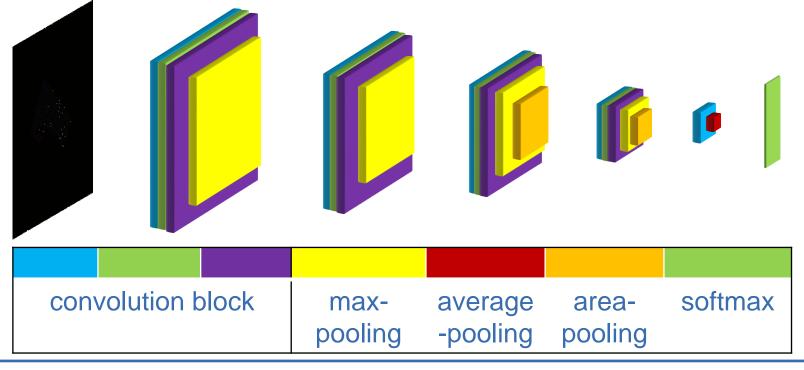
- Residual mapping [He et al., 2015]:
 - What we want is a mapping $x \rightarrow H(x)$
 - Identity mapping cannot be learnt easily
 - Consequence: learn residual mapping F(x)such that H(x) = F(x) + x
 - This works by using shortcut connections
 - We have to learn F(x) rather than H(x)
 - We can stack many such basic building blocks
 - − Very deep networks (up to 152 layers) \rightarrow 3.6% top 5^x error!



Example: Land Use Classification of GIS objects

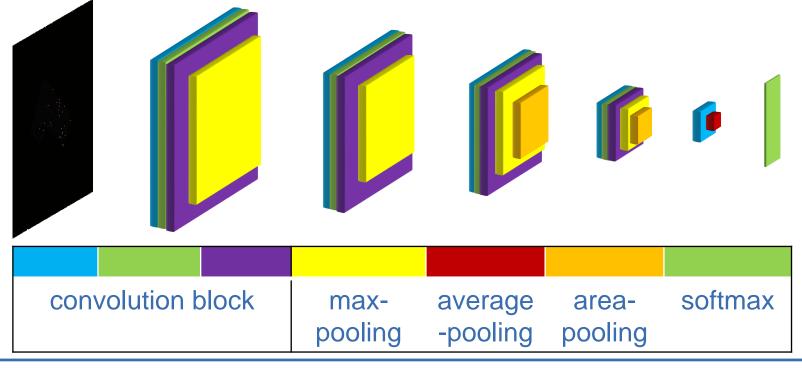
- Network architecture: LiteNet [Paisitkriangkrai et al., 2016]
- LC result as additional input, training from scratch incl. data augmentation

new: additional layers for average and area pooling

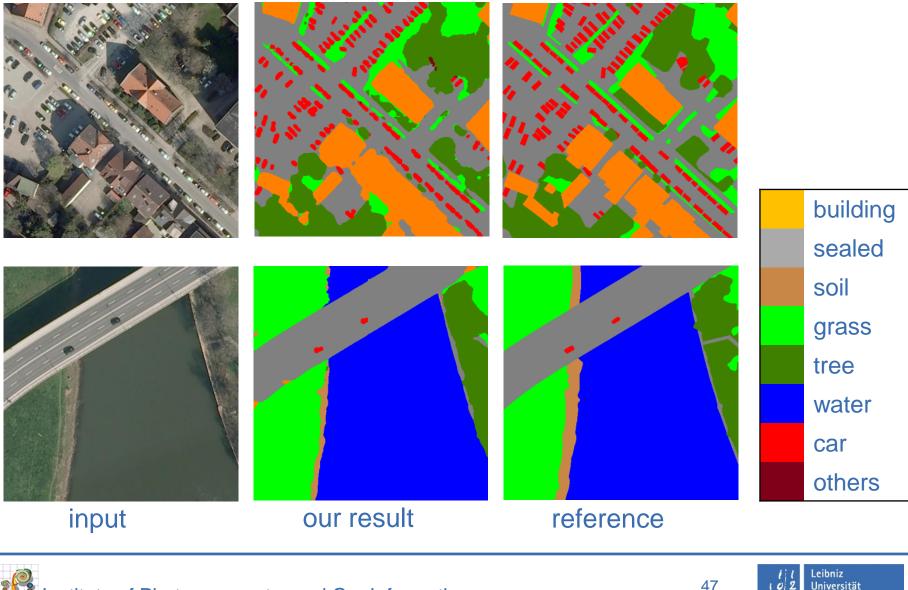


Example: Land Use Classification of GIS objects

- Network architecture: from LiteNet [Paisitkriangkrai et al., 2016]
- Land cover result as additional input, training from scratch incl. data augmentation
- new: additional layers for average and area pooling



Example: Results, Land Cover



Institute of Photogrammetry and GeoInformation

47

Hannover

Example: Evaluation (Hameln, Schleswig)

Land cover

Data	CRF [Albert et al., 2017]		CNN-Approach	
	OA [%]	Av. F1 [%]	OA [%]	Av. F1 [%]
Hameln	83.7	66.7	89.1	81.8
Schleswig	82.5	64.6	87.3	79.3

Land use

Data	No. of	CRF [Albert et al., 2017]	CNN
	objects	OA [%]	OA [%]
Hameln	~3300	78.3	81.9
Schleswig	~4500	72.1	78.0

CNN: Discussion

- Today, CNN are considered to outperform other classifiers
- Strength lies in "high-level representation" → interpretation of a method for learning features, classifier itself is not so important
- Key to good performance: depth
- Open-source implementations:
 - Tensorflow (Google): https://www.tensorflow.org
 - CAFFE2 (Facebook): <u>https://caffe2.ai/</u>
- CNN are a "black box" that is not easily understood
- There are tricks for fooling CNNs: see
 <u>http://karpathy.github.io/2015/03/30/breaking-convnets/</u>

