Histograms

As one of the non-parametric techniques in Bayesian Classification

Contents

- Theorem of Bayes
- Bayesian classification
- Non-parametric methods:
 - Histogram: 1-D Case
 - Histogram: 2-D Case
- Example
- Naive Bayes Model
- Discussion

Theorem of Bayes and Image Analysis

- The task of image analysis is to get an explicit description of objects in the image
- This requires to detect objects in the first place
- Therefore, knowledge about the appearance of objects in the image is used
- According to the way the knowledge is represented, there are:
 - model-based methods for image analysis
 - statistical methods for image analysis (discussed here)

Theorem of Bayes and Statistical properties

Where does the idea of statistical methods lead us to:

- Objects are not primarily described by object-models, but by statistical properties of the sensor data in relation to the objects
- We need a model of statistic properties in order to recognize objects, this process can be treated as classification
- Observed features can be treated as functions of the object type / class label
- These functions can be represented as probability densities

Theorem of Bayes

Recapitulation of the Theorem of Bayes:

• For the joint distribution $p(\mathbf{x}, C)$, the product rule applies:

 $p(\mathbf{x}, C) = p(C \mid \mathbf{x}) \cdot p(\mathbf{x})$

- Likewise: $p(C, \mathbf{x}) = p(\mathbf{x} | C) \cdot p(C)$
- Due to $p(\mathbf{x}, C) = p(C, \mathbf{x})$:

 $p(C \mid \mathbf{x}) \cdot p(\mathbf{x}) = p(x \mid C) \cdot p(C)$

Therefore: Theorem of Bayes:

$$p(C \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid C) \cdot p(C)}{p(\mathbf{x})} = \frac{p(\mathbf{x}, C)}{p(\mathbf{x})}$$

Theorem of Bayes: Interpretation

- C can be treated as object type or class label,
- **x** is the observed feature
- p(C | x) is posterior probability, a conditional probability for the class label C given the observation x
- p(x | C) is likelihood, the conditional probability to observe a feature given a class
- p(C) corresponds to prior for the occurrence of class label C
- p(x) is probability of the data, the marginal distribution of x, enables us to interpret p(C | x) as a probability
- $p(C, \mathbf{x})$ is joint distribution

Theorem of Bayes for classification

- Maximum a posteriori (MAP) criterion: class label C is determined so that the conditional probability p(C | x) for the class label C given the observed data x is maximized
- Given:
 - Models for the likelihoods $p(\mathbf{x} | C = L^k)$ of all classes L^k
 - Priori probabilities $p(C = L^k)$ of all classes L^k
 - A feature vector **x** to be classified
- Wanted:

- class C_{map} of **x** according to the MAP criterion

Bayesian Classification

- Posterior probability needs to be modeled but it is difficult to be modelled directly
- Instead it can be modelled indirectly using inverse reasoning, which means to derive information about the cause (the object type) from the effect (the observed features)

 \rightarrow Bayesian Classification

• MAP can also be applied without knowing $p(\mathbf{x})$, since $p(C \mid \mathbf{x}) \propto p(\mathbf{x} \mid C) \cdot p(C)$

implies that $\max(p(C | \mathbf{x})) = \max(p(\mathbf{x} | C) \cdot p(C))$

Bayesian Classification

- Procedure:
 - 1) For all classes L^k : calculate $p(\mathbf{x}, C=L^k) = p(\mathbf{x}|C=L^k) \cdot p(C=L^k)$
 - 2) Calculate $p(\mathbf{x}) = \sum_{k} p(\mathbf{x} | C = L^{k}) \cdot p(C = L^{k})$
 - 3) For all classes L^k : calculate $p(C=L^k | \mathbf{x}) = p(\mathbf{x}, C=L^k) / p(\mathbf{x})$
 - 4) C_{map} is the label of L^k for which $p(C=L^k | \mathbf{x})$ is a maximum

- Next step:
 - model p(x | C) directly from the training data:
 Histograms, as an example of non-parametric method

For the case of discrete variables: $p(x = g | C = L^k) = \frac{\kappa_{gk}}{N_k}$

 K_{qk} : Number of pixels in the training area of class L^k and grey value g; N_k : Number of pixels in the training area of class L^k

Practically implemented with lookup tables!

• For the case of continuous variables: $p(\mathbf{x} = \mathbf{g} \mid C = L^k) = \frac{K_{gk}}{N_k \cdot \Lambda}$

 Δ : Grid width used for discretization e.g. determined from cross-validation. too small value leads to noisy approximation, too large leads to strong smoothing!

• In case of 2 dimensional discrete variables (assuming $\Delta_1 = \Delta_2$):

$$p(x_1 = g_1, x_2 = g_2 | C = L^k) = \frac{K_{g_1g_2k}}{N \cdot \Delta^2}$$

<u>no. of pixels with class L^k with grey value combination (g_1, g_2) no. of pixels with class L^k times grid size Δ^2 </u>

Example

- Image primitives represented as 2-D features
- When g_1 is fixed, there are 4 different options for g_2 .
- Also 4 different options, when g_2 is fixed.
- In the end, 16 likelihoods need to be calculated for this 2-D feature space and grid size of 0.5.

- In general Q^D probabilities need to be determined, when we have D dimensional features with Q possible values.
- \rightarrow Hardly possible for D > 2!
- → "Curse of dimensionality"
- → "Hughes phenomenon" [Hughes, 1968 (!)]: Beyond a certain point, the classification accuracy is reduced by using additional features

• Can the problem be simplified by determination of the probabilities for each feature **independently**?

the joint distribution of two features $x_1, x_2 \rightarrow p(x_1, x_2, C) = p(x_1, x_2 | C) \cdot p(C)$

→ Generally not possible, but..

- If we assume the two features x_1 , x_2 to be conditionally independent, we can factorize the likelihood $p(x_1, x_2 | C)$ to $p(x_1, x_2 | C) = p(x_1 | C) \cdot p(x_2 | C)$
- By definition, the features x₁ and x₂ are conditionally independent if p(x₁ | x₂, C) does not depend on x₂

- "conditionally independent" thus means that x₁ and x₂ are statistically independent if C is known. It does not mean that x₁ and x₂ are statistically independent in the general meaning of the word.
- We can extend it, if the features of a multi-dimensional feature vector **x** are conditionally independent, the likelihood can be factorised: $p(\mathbf{x} | C) = p(\mathbf{x}_1 | C) \cdot p(\mathbf{x}_2 | C) \cdot \cdot p(\mathbf{x}_D | C)$
- Consequence: the likelihood can be determined from the marginal distributions p(x_i | C)

 \rightarrow Q · D instead of Q^D parameters!

• This approach is called the "Naive Bayes Model"

Example of Impact of the Naive Bayes Model

 Aerial image with training area for "vegetation" (V) (87 x 85 = 7395 pixels)
 Assuming conditional

Example of Impact of the Naive Bayes Model

Discussion

- Bayesian classification uses "inverse reasoning" since likelihoods are often easier to model than posteriors
- Using histograms as a non-parametric technique to model the likelihoods is a simple but often well working approach
- Histograms can also be used for multidimensional data, but for more than two dimensions the amount of required training data and computational resources drastically increases
 - \rightarrow Curse of Dimensionality

Discussion

- One way to still use non-parametric techniques for multidimensional data is the Naive Bayes Model
- In the Naive Bayes Model statistical dependencies between the features are neglected, which is a strong simplification in general! Maybe can be justified if the features are determined from independent sensors
- However, wrongly taking the assumption of conditional independence can lead to a incorrect likelihood model

