Histograms

As one of the non-parametric techniques in Bayesian Classification

Contents

- Theorem of Bayes
- Bayesian classification
- Non-parametric methods:
	- Histogram: 1-D Case
	- Histogram: 2-D Case
- Example
- Naive Bayes Model
- **Discussion**

Theorem of Bayes and Image Analysis

- The task of image analysis is to get an explicit description of objects in the image
- This requires to detect objects in the first place
- Therefore, knowledge about the appearance of objects in the image is used
- According to the way the knowledge is represented, there are:
	- model-based methods for image analysis
	- **statistical methods for image analysis (discussed here)**

Theorem of Bayes and Statistical properties

Where does the idea of statistical methods lead us to:

- Objects are not primarily described by object-models, but by statistical properties of the sensor data in relation to the objects
- We need a model of statistic properties in order to recognize objects, this process can be treated as classification
- Observed features can be treated as functions of the object type / class label
- These functions can be represented as probability densities

Theorem of Bayes

Recapitulation of the Theorem of Bayes:

• For the joint distribution *p*(**x**, *C*), the product rule applies:

 $p(\mathbf{x}, C) = p(C | \mathbf{x}) \cdot p(\mathbf{x})$

- Likewise: $p(C, x) = p(x | C) \cdot p(C)$
- Due to $p(\mathbf{x}, C) = p(C, \mathbf{x})$:

 $p(C | \mathbf{x}) \cdot p(\mathbf{x}) = p(\mathbf{x} | C) \cdot p(C)$

• Therefore: **Theorem of Bayes:**

Theorem of Bayes:
\n**Theorem of Bayes:**
\n
$$
p(x, C),
$$
 the product rule applies:
\n
$$
x) \cdot p(x)
$$
\n
$$
= p(x | C) \cdot p(C)
$$
\n(C, x):
\n
$$
= p(x | C) \cdot p(C)
$$
\n**2m of Bayes:**
\n
$$
p(C | x) = \frac{p(x | C) \cdot p(C)}{p(x)} = \frac{p(x, C)}{p(x)}
$$
\n
$$
= \frac{p(x | C) \cdot p(C)}{p(x)}
$$
\n
$$
= \frac{p(x | C) \cdot p(C)}{p(x)}
$$
\n
$$
= \frac{p(x | C) \cdot p(C)}{p(x)}
$$
\n
$$
= \frac{p(x | C) \cdot p(C)}{p(x)}
$$
\n
$$
= \frac{p(x | C) \cdot p(C)}{p(x)}
$$
\n
$$
= \frac{p(x | C) \cdot p(C)}{p(x)}
$$
\n
$$
= \frac{p(x | C) \cdot p(C)}{p(x)}
$$
\n
$$
= \frac{p(x | C) \cdot p(C)}{p(x)}
$$

Theorem of Bayes: Interpretation

- *C* can be treated as object type or class label,
- **x** is the observed feature
- *p(C | x)* is posterior probability, a conditional probability for the class label C given the observation **x**
- *p*(x | C) is likelihood, the conditional probability to observe a feature given a class
- *p(C)* corresponds to prior for the occurrence of class label C
- *p*(**x**) is probability of the data, the marginal distribution of **x**, enables us to interpret $p(C | x)$ as a probability
- *p*(*C*, **x**) is joint distribution

Theorem of Bayes for classification

- Maximum a posteriori (MAP) criterion: class label *C* is determined so that the conditional probability *p*(*C* | **x**) for the class label *C* given the observed data **x** is maximized
- Given:
	- $-$ Models for the likelihoods $p(x \mid C = L^k)$ of all classes L^k
	- $-$ Priori probabilities $p(C = L^k)$ of all classes L^k
	- A feature vector **x** to be classified
- Wanted:

– class *Cmap* of **x** according to the MAP criterion

Bayesian Classification

- Posterior probability needs to be modeled but it is difficult to be modelled directly
- Instead it can be modelled indirectly using inverse reasoning, which means to derive information about the cause (the object type) from the effect (the observed features)

 \rightarrow Bayesian Classification

• MAP can also be applied without knowing *p*(**x**), since *p*(*C* | **x**) *p*(**x** | *C*) · *p*(*C*)

implies that $max(p(C | x)) = max(p(x | C) \cdot p(C))$

Bayesian Classification

- Procedure:
	- 1) For all classes L^k : calculate $p(\mathbf{x}, C=L^k) = p(\mathbf{x}|C=L^k) \cdot p(C=L^k)$
	- 2) Calculate *k*
	- 3) For all classes L^k : calculate $p(C=L^k | \mathbf{x}) = p(\mathbf{x}, C=L^k) / p(\mathbf{x})$
- 4) C_{map} is the label of L^k for which $p(C=L^k|\mathbf{x})$ is a maximum **sification**
 $(x, C=L^k) = p(x|C=L^k) \cdot k$
 $(k \cdot p)(C=L^k)$
 $(C=L^k | x) = p(x, C=L^k)$
 $(p(C=L^k | x)$ is a maxim
- Next step:
- model *p*(**x** | C) directly from the training data: Histograms, as an example of non-parametric method **ives ian Classification**

ss L^k : calculate $p(\mathbf{x}, C=L^k) = p(\mathbf{x}|C=L^k) \cdot p(C=L^k)$
 $(\mathbf{x}) = \sum_k p(\mathbf{x}|C=L^k) \cdot p(C=L^k)$

ss L^k : calculate $p(C=L^k|\mathbf{x}) = p(\mathbf{x}, C=L^k) / p(\mathbf{x})$

bel of L^k for which $p(C=L^k|\mathbf{x})$ is a maximum

of d **ayesian Classification**

ses *L^k*: calculate $p(\mathbf{x}, C=L^k) = p(\mathbf{x}|C=L^k) \cdot p(C=L^k)$
 $p(\mathbf{x}) = \sum_k p(\mathbf{x}|C=L^k) \cdot p(C=L^k)$

ses *Lk*²: calculate $p(C=L^k|\mathbf{x}) = p(\mathbf{x}, C=L^k) / p(\mathbf{x})$

(abel of *Lk*⁶ for which $p(C=L^k|\mathbf{x})$ is a maxi

• For the case of discrete variables: $p(x = g \mid C = L^k) = \frac{N g k}{N L}$

k K

 K_{gk} : Number of pixels in the training area of class L^k and grey value g; N_k : Number of pixels in the training area of class L^k

Practically implemented with lookup tables!

• For the case of continuous variables: $p(\mathbf{x} = g \mid C = L^k) =$ K_{gk} N_k ∙ Δ

∆: Grid width used for discretization e.g. determined from cross-validation. too small value leads to noisy approximation, too large leads to strong smoothing! $(X = g | C = L^k) = \frac{N_{gk}}{N_k}$

ass L^k and grey value g;

ss L^k

s!
 $D(X = g | C = L^k) = \frac{K_{gk}}{N_k \cdot \Delta}$

mined from cross-validation.

imation,
 $10 \tbinom{\frac{1}{2} \frac{\text{Leibniz}}{\text{Universität}}}{}$

• In case of 2 dimensional discrete variables (assuming $\Delta_1 = \Delta_2$):

$$
p\big(\textbf{X}_1 = \textbf{g}_1, \textbf{X}_2 = \textbf{g}_2 \ | \ \textbf{C} = \textbf{L}^k \big) = \frac{\textbf{K}_{g_1 g_2 k}}{\textbf{N} \cdot \Delta^2}
$$

 $=$ <u>no. of pixels with class L^k with grey value combination (g_1, g_2)
and of pixels with class L^k times grid size λ^2 </u> no. of pixels with class *L k* times grid size ∆ 2

Example

- Image primitives represented as 2-D features
- When g_1 is fixed, there are 4 different options for g_2 .
- Also 4 different options, when g_2 is fixed.
- In the end, 16 likelihoods need to be calculated for this 2-D feature space and grid size of 0.5.

- In general Q^D probabilities need to be determined, when we have D dimensional features with Q possible values.
	- \rightarrow Hardly possible for $D > 2!$
- \rightarrow "Curse of dimensionality"
- \rightarrow "Hughes phenomenon" [Hughes, 1968 (!)]: Beyond a certain point, the classification accuracy is reduced by using additional features

• Can the problem be simplified by determination of the probabilities for each feature **independently**?

the joint distribution of two features $x_1, x_2 \rightarrow p(x_1, x_2, C) = p(x_1, x_2 | C) \cdot p(C)$

 \rightarrow Generally not possible, but..

- If we assume the two features x_1 , x_2 to be conditionally independent, we can factorize the likelihood *p*(*x¹ , x² | C)* to $p(x_1, x_2 | C) = p(x_1 | C) \cdot p(x_2 | C)$
- By definition, the features x_1 and x_2 are conditionally independent if $p(x_1 | x_2, C)$ does **not** depend on x_2

- "conditionally independent" thus means that x_1 and x_2 are statistically independent if *C* is known. It does not mean that *x¹* and $x₂$ are statistically independent in the general meaning of the word.
- We can extend it, if the features of a multi-dimensional feature vector **x** are conditionally independent, the likelihood can be factorised: $p(\mathbf{x} | C) = p(\mathbf{x}_1 | C) \cdot p(\mathbf{x}_2 | C) \cdot p(\mathbf{x}_D | C)$
- Consequence: the likelihood can be determined from the marginal distributions *p*(*xⁱ | C)*

 \rightarrow Q \cdot *D* instead of Q^D parameters!

This approach is called the "Naive Bayes Model"

Example of Impact of the Naive Bayes Model

• Aerial image with training area for "*vegetation*" (V) $(87 \times 85 = 7395 \text{ pixels})$ Assuming conditional

Example of Impact of the Naive Bayes Model

Discussion

- Bayesian classification uses "inverse reasoning" since likelihoods are often easier to model than posteriors
- Using histograms as a non-parametric technique to model the likelihoods is a simple but often well working approach
- Histograms can also be used for multidimensional data, but for more than two dimensions the amount of required training data and computational resources drastically increases
	- \rightarrow Curse of Dimensionality

Discussion

- One way to still use non-parametric techniques for multidimensional data is the Naive Bayes Model
- In the Naive Bayes Model statistical dependencies between the features are neglected, which is a strong simplification in general! Maybe can be justified if the features are determined from independent sensors
- However, wrongly taking the assumption of conditional independence can lead to a incorrect likelihood model

