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Theorem of Bayes and Image Analysis

• The task of image analysis is to get an explicit description of 

objects in the image

• This requires to detect objects in the first place

• Therefore, knowledge about the appearance of objects in the 

image is used

• According to the way the knowledge is represented, there are:

– model-based methods for image analysis

– statistical methods for image analysis (discussed here)
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Theorem of Bayes and Statistical properties

Where does the idea of statistical methods lead us to:

• Objects are not primarily described by object-models, but by 

statistical properties of the sensor data in relation to the objects

• We need a model of statistic properties in order to recognize 

objects, this process can be treated as classification

• Observed features can be treated as functions of the object 

type / class label

• These functions can be represented as probability densities
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Theorem of Bayes

Recapitulation of the Theorem of Bayes:

• For the joint distribution p(x, C), the product rule applies:

p(x,C) = p(C | x) · p(x)

• Likewise: p(C, x) = p(x | C) · p(C)

• Due to p(x, C) = p(C, x):

p(C | x) · p(x) = p(x | C) · p(C)

• Therefore: Theorem of Bayes:
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Theorem of Bayes: Interpretation

• C can be treated as object type or class label, 

• x is the observed feature

• p(C | x) is posterior probability, a conditional probability for the 

class label C given the observation x

• p(x | C) is likelihood, the conditional probability to observe a 

feature given a class

• p(C) corresponds to prior for the occurrence of class label C

• p(x) is probability of the data, the marginal distribution of x, 

enables us to interpret p(C | x) as a probability

• p(C, x) is joint distribution
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Theorem of Bayes for classification

• Maximum a posteriori (MAP) criterion: class label C is 

determined so that the conditional probability p(C | x) for the 

class label C given the observed data x is maximized

• Given:

– Models for the likelihoods p(x | C = Lk) of all classes Lk

– Priori probabilities p(C = Lk) of all classes Lk

– A feature vector x to be classified

• Wanted: 

– class Cmap of x according to the MAP criterion
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Bayesian Classification

• Posterior probability needs to be modeled but it is difficult to be 

modelled directly

• Instead it can be modelled indirectly using inverse reasoning, 

which means to derive information about the cause (the object 

type) from the effect (the observed features)

 Bayesian Classification

• MAP can also be applied without knowing p(x), since

p(C | x)  p(x | C) · p(C)

implies that max(p(C | x)) = max(p(x | C) · p(C))
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Bayesian Classification
• Procedure: 

1) For all classes Lk: calculate p(x, C=Lk) = p(x|C=Lk) · p(C=Lk) 

2) Calculate 

3) For all classes Lk : calculate p(C=Lk | x) = p(x, C=Lk) / p(x) 

4) Cmap is the label of Lk for which p(C=Lk | x) is a maximum

• Next step:

– model p(x | C) directly from the training data: 

Histograms, as an example of non-parametric method
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Histograms: 1-D Case

• For the case of discrete variables:

𝐾𝑔𝑘: Number of pixels in the training area of class 𝐿𝑘 and grey value g;

𝑁𝑘: Number of pixels in the training area of class 𝐿𝑘

Practically implemented with lookup tables! 

• For the case of continuous variables:  p(x = g | C = 𝐿𝑘) = 
𝐾𝑔𝑘

𝑁𝑘∙ ∆

∆: Grid width used for discretization e.g. determined from cross-validation.

too small value leads to noisy approximation,

too large leads to strong smoothing!
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Histograms: 2-D Case

• In case of 2 dimensional discrete variables (assuming D1 = D2):

= no. of pixels with class Lk with grey value combination (g1, g2)
no. of pixels with class Lk times grid size ∆2
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Example

• Image primitives represented as 2-D features 

• When 𝑔1is fixed, there are 4 different options for 𝑔2. 

• Also 4 different options, when 𝑔2 is fixed. 

• In the end, 16 likelihoods need to be calculated 

for this 2-D feature space and grid size of 0.5. 
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Histograms: 2-D Case

• In general QD probabilities need to be determined, when we 

have D dimensional features with Q possible values.

→ Hardly possible for D > 2! 

→ „Curse of dimensionality“       

→ „Hughes phenomenon“ [Hughes, 1968 (!)]: 

Beyond a certain point, the classification accuracy is 

reduced  by using additional features
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Histograms: 2-D Case

• Can the problem be simplified by determination of the 

probabilities for each feature independently?

p(x1, x2, C)  = p(x1, x2 | C) · p(C) 

 Generally not possible, but..

• If we assume the two features x1, x2 to be conditionally 

independent, we can factorize the likelihood p(x1, x2 | C)

to p(x1, x2 | C) = p(x1 | C) · p(x2 | C)

• By definition, the features x1 and x2 are conditionally 

independent if p(x1 | x2, C)  does not depend on x2
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Histograms: 2-D Case

• "conditionally independent" thus means that x1 and x2 are 

statistically independent if C is known. It does not mean that x1

and x2 are statistically independent in the general meaning of 

the word. 

• We can extend it, if the features of a multi-dimensional feature 

vector x are conditionally independent, the likelihood can be 

factorised:   p(x | C) = p(x1 | C) · p(x2 | C) · · p(xD | C)

• Consequence: the likelihood can be determined from the 

marginal distributions p(xi | C)

 Q · D instead of QD parameters!

• This approach is called the „Naive Bayes Model“
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Example of Impact of the Naive Bayes Model

• Aerial image with training area for “vegetation“ (V) 

(87 x 85 = 7395 pixels)
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p(x1 | V) · p(x2 | V)

Assuming conditional

independence:

 MODEL OK!
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Example of Impact of the Naive Bayes Model

Aerial image with training area for “street“ (S)

(49 x 102 = 4998 pixels)

x2= G

x1= R

p(x1, x2 | S)

p
(x
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p(x1 | S)

x1= R

x2= G

p(x1 | S) · p(x2 | S)

incorrect clusters!
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Assuming conditional 

independence:

 WRONG MODEL!
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Discussion

• Bayesian classification uses „inverse reasoning“ since 

likelihoods are often easier to model than posteriors

• Using histograms as a non-parametric technique to model the 

likelihoods is a simple but often well working approach

• Histograms can also be used for multidimensional data, but for 

more than two dimensions the amount of required training data 

and computational resources drastically increases

 Curse of Dimensionality
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Discussion

• One way to still use non-parametric techniques for 

multidimensional data is the Naive Bayes Model

• In the Naive Bayes Model statistical dependencies between the 

features are neglected, which is a strong simplification in 

general! Maybe can be justified if the features are determined 

from independent sensors

• However, wrongly taking the assumption of conditional 

independence can lead to a incorrect likelihood model
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